Ученые записки Таврического национального университета им. В.И. Вернадского Серия: География. Том 23 (62). 2010 г. № 1. С.3-9.

РАЗДЕЛ 1. ФИЗИЧЕСКАЯ ГЕОГРАФИЯ И ГЕОЭКОЛОГИЯ

УДК 57.043:63:37.022

АНАЛИЗ ПЛОТНОСТИ ЗАГРЯЗНЕНИЯ РАДИОНУКЛИДАМИ 137 CS И 90 SR ФИЗИКО-ГЕОГРАФИЧЕСКИХ ОБЛАСТЕЙ КРЫМА

Алексашкин И.В., Клименко А.Н., Горбунов Р.В.

Таврический национальный университет им. В.И. Вернадского, Симферополь, Украина, E-mail: aligor@rambler.ru

Рассмотрено загрязнение Крымского полуострова долгоживущими радионуклидами цезия-134 и строция-90. Проанализирован характер пространственного распределения плотности загрязнения радиоактивными изотопами и причины его неоднородности.

Ключевые слова: атмосферные осадки, глобальные выпадения, долгоживущие радионуклиды, плотность радионуклидного загрязнения.

ВВЕДЕНИЕ

Создание и испытание ядерного оружия, развитие ядерной энергетики, а также связанных с ней научных исследований и технологий, авария на Чернобыльской АЭС привели к загрязнению территории Крымского полуострова долгоживущими радионуклидами.

В экологическом отношении наибольшую опасность представляют ⁹⁰Sr и ¹³⁷Cs. Это обусловлено длительным периодом полураспада (28 лет ⁹⁰Sr и 33 года ¹³⁷Cs), высокой энергией излучения и способностью легко включаться в биологический круговорот и цепи питания. Стронций по химическим свойствам близок к кальцию и входит в состав костных тканей, а цезий близок к калию и включается во многие реакции живых организмов. Накапливаясь в организме они являются постоянными источниками внутреннего облучения [8].

Целью данного исследования явился анализ на основе существующих данных радиоэкологического состояния территории Крымского полуострова и выделение основных причин неоднородности загрязнения территории радионуклидами 137 Cs и 90 Sr в зависимости от факторов их миграции.

МАТЕРИАЛ И МЕТОДЫ

Согласно существующим схемам физико-географического районирования степной Крым включают в Восточно-Европейскую физико-географическую равнинную страну, а горную часть полуострова — в страну складчатых гор альпийского орогенеза. В пределах Крыма границу между умеренным и субтропическим поясами проводят по южному пределу среднегорья Главной гряды гор. На территории полуострова выделяют две физико-географические провинции, 7 областей и 21 физико-географический район [9].

Крымская степная провинция состоит из 4 физико-географических областей: Северо-Крымской низменной степи, Тарханкутской возвышенно-равнинной степи, Центрально-Крымской равнинной степи и Керченской холмисто-грядовой степи.

По составу ландшафтов в пределах провинции горного Крыма выделяют три физико-географических области: Предгорную лесостепную, Главную горно-луговолесную гряду, Крымскую южнобережную субсредиземноморскую [9].

Радиоактивные продукты деления, образующиеся при проведении ядерных испытаний, подразделяются на локальные, выпавшие на поверхность земли или воды, тропосферные и стратосферные, распределение которых зависит от типа ядерного взрыва, места его проведения и мощности [7].

Локальные выпадения, которые могут составлять до 50 % всех радиоактивных веществ, образующихся при взрыве, представляют собой содержащуюся в крупных аэрозольных частицах, которые выпадают в радиусе 100 км от места взрыва. Тропосферные выпадения состоят из более мелких аэрозолей, которые не могут пройти тропосферу после взрыва и содержат радионуклиды, имеющие период полураспада от нескольких суток до нескольких месяцев, такие как ¹³¹I, ¹⁴⁰Ba, ⁸⁹Sr. Тропосферные воздушные массы переносят их на многие тысячи километров от места взрыва, обширная территория загрязняется преимущественно в зоне той широты, на которой производился ядерный взрыв. Они выпадают на поверхность земли со средним временем пребывания в тропосфере до 30 суток [2]. В ряде случаев наблюдается более высокая скорость выведения ⁹⁰Sr и ¹³⁷Сѕ из нижних слоев атмосферы – в течение 5 суток.

Стратосферный и тропосферный резервуары – источник повсеместных (глобальных) выпадений радиоактивных веществ. В период формирования аэрозольных частиц в стратосфере и тропосфере происходит так называемое фракционирование радионуклидов. Радиоактивные изотопы стронция и цезия не принимают участия в процессе конденсации, они адсорбируются на поверхности мелких твердых частиц и в парах влаги, образуя таким образом мелкодисперсные аэрозоли.

Во время взрыва ядерного заряда большой мощности на земле или в атмосфере основная часть радиоактивных продуктов деления проникла в стратосферу и сохранилась в ней на протяжении месяцев и лет, постепенно осаждаясь на земную поверхность. С тех времен короткоживущие радионуклиды распались, а за счет выпадения долгоживущих радионуклидов 137 Cs, 90 Sr и трансурановых элементов сформировалось глобальное низкофоновое загрязнение земной поверхности и водной среды. Максимальные уровни загрязнения почв, обусловленные глобальными выпадениями, приурочены полосе земной поверхности между 40^0 и 60^0 северной широты.

Фракционирование радионуклидов в радиоактивных выпадениях приводит к неравномерному очищению атмосферы от продуктов деления. Это прежде всего обусловлено тем, что скорость оседания частиц различного размера неодинакова. Крупные частицы выпадают быстрее, мелкие – медленнее. Период полувыведения из стратосферы крупнодисперсных частиц, обогащенных сравнительно короткоживущими радионуклидами (95Zr, 141Ce, 144Ce, 181W, 185W, 91V), примерно в

2 раза короче периода полувыведения долгоживущих радионуклидов 90 Sr и 137 Cs. Это различие определяется эффектом фракционирования в процессе формирования аэрозольных частиц.

Радиоактивные выпадения стратосферного происхождения, попадая в тропосферу, в дальнейшем оседают на поверхности земли в основном в результате вымывания атмосферными осадками. Атмосферные осадки играют основную роль в очистке тропосферы. Выпадение радионуклидов из стратосферы происходит медленно: время пребывания их на высоте 15-25 км варьирует в пределах от 0,3 до 2 лет и зависит от высоты и широты. В связи с большой длительностью пребывания радионуклидов в стратосфере коротко- и среднеживущие радионуклиды полностью распадаются и основное радиологическое значение приобретают долгоживущие радионуклиды ⁹⁰Sr и ¹³⁷Cs.

Анализ плотности загрязнения Крымского полуострова радионуклидами цезия-134 и строция-90 проводился на основе данных атласа радиоактивного загрязнения Украины. Выявлялись закономерности и отличия характера плотности загрязнения полуострова состоянием на 1985 год от плотности загрязнения состоянием на 2006 год.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Глобальные выпадения радионуклидов из атмосферы на поверхность земли определяются свойствами радиоактивных материалов, структурой и составом почв и рядом метеорологических факторов, из которых основную роль играют атмосферные осадки.

Большая часть первоначально выброшенных радионуклидов исчезла в результате радиоактивного распада, поэтому в настоящее время самую большую проблему составляет 137 Cs и 90 Sr [8].

Миграция радионуклидов в почве происходит вследствие целого ряда как геохимических, так и биологических факторов, которые проходят синхронно: физико-химических особенностей почвы (содержания гумуса, карбонатности, рН, содержания обменных катионов), конвективного переноса (фильтрации атмосферных осадков вглубь почвы, капиллярного потока влаги к поверхности почвы, который вызван испарениями, теплопереноса влаги под действием градиента температуры), диффузии свободных и адсорбированных ионов, переноса с гравитационным током влаги, переноса радионуклидов коллоидными частичками (лессиваж), активности корневой системе растений и жизнедеятельности животных почвы. Указанные факторы не являются равнозначными, поскольку интенсивность и длительность их действия разные и зависят от конкретных условий [8].

Плотность загрязнения территории Крымского полуострова ¹³⁷Cs и ⁹⁰Sr является результатом суммирования этих радионуклидов естественного происхождения и техногенных изотопов, образованных в связи с активной антропогенной деятельностью.

Согласно данным атласа радиоактивного загрязнения [3], наиболее плотное загрязнение Крымского полуострова, сформированное к 1985 году, наблюдалось во всех областях Горной провинции и области Керченской холмисто-грядовой степи.

Данные области подверглись более интенсивному воздействию радионуклидов из глобальных выпадений, что определило плотность загрязнения до 4 $\rm Ke/m^2$. В остальных областях Крымской степной провинции плотность загрязнения $\rm ^{137}Cs$ не превышала 2-2,5 $\rm Ke/m^2$ (таблица 1).

Южный след Чернобыльской катастрофы 1 мая 1986 года накрыл пятнами территорию Автономной республики Крым, сформировав сложную, мозаичную картину распределения загрязнения территории. По данным 2006 года [3] уровень загрязнения в Северо-Крымской степи и Керченской холмисто-грядовой степи остался на прежнем уровне, спустя 20 лет после аварии на ЧАЭС. Наибольшее количество радионуклидов ¹³⁷Сs выпало и закрепилось в области Главной гряды и Крымском южнобережном субсредиземноморье, где плотность загрязнения почв составляет 4-10 Бк/м². На территориях Предгорной лесостепи, Центральностепи и Тарханкутской равнины сформировано низкофоновое загрязнение в пределах 2-4 Бк/м². Так как осадки являются ведущим фактором выпадения радионуклидов из атмосферы, соответственно больше радионуклидов выпало в районах с наибольшим атмосферным увлажнением, и меньше в степных северных районах Крыма. Горные хребты, являясь препятствием для воздушных течений, создали эффект накопления радионуклидов, повысив здесь плотность загрязнения цезием в 2-3 раза по сравнению с доаварийным уровнем. Также, в связи с высокой и карбонатностью и гумусностью почв Главной гряды и Крымского южнобережного субсредиземноморья, на этих территориях произошло более плотное закрепление радиоактивного цезия. На Тарханкутской возвышенной равнине и отдельных районах Предгорной лесостепи распространены черноземы остаточно-карбонатные и дерново-карбонатные почвы, в которых относительно высокое процентное содержание фракции диаметром < 0,25 мм. Эта фракция обладает высокими сорбционными свойствами, поэтому радионуклиды ¹³⁷Cs плотно удерживаются в этих почвах [8]. В отличие от дерново-карбонатных почв в бурых горных лесных почвах наблюдается абсолютное преобладание фракции размером >1 мм, т.е. данная почва скелетная и сильнокаменистая [4]. Фракция с диаметром >1 мм обладает довольно плохой способностью к сорбции. Однако плотность загрязнения цезием-137 в 4-10 кБк/м² в горном Крыму можно объяснить выпадением здесь наибольшего количества радионуклидов с атмосферными осадками (до 1200 мм). северных районах радионуклиды 137Cs путем механического возделывания сельскохозяйственных угодий могли попасть в более глубокие слои почвы, а также перейти в сельскохозяйственную продукцию, обеспечив частичное снижение плотности загрязнения.

Загрязнение Крымского полуострова радионуклидами 90 Sr имеет менее сложный характер распределения. В 1985 году на всей территории полуострова она составляла менее 2 кБк/м².

Радионуклиды ⁹⁰Sr сформировали на данной территории низкофоновое загрязнение в результате глобальных выпадений из атмосферы при испытаниях государствами ядерного оружия и использовании их в научных исследованиях [7].

После аварии на Чернобыльской АЭС долгоживущие радионуклиды ⁹⁰Sr с воздушными потоками попали на территорию Крыма. В связи с высоким

АНАЛИЗ ПЛОТНОСТИ ЗАГРЯЗНЕНИЯ РАДИОНУКЛИДАМИ 137CS И 90SR...

количеством атмосферных осадков на территории горного Крыма, здесь выпало и закрепилось наибольшее количество стронция-90. Учитывая более активный вертикальный сток с южных более крутых, чем северные, склонов и высокую сорбционную способность южнобережных почв можно объяснить плотность в $4 \, \text{кБк/м}^2$ на данной территории. Загрязнение остальной части Крыма осталось на том же уровне по сравнению с 1985 годом [3].

Таблица 1. Зависимость плотности загрязнения физико-географических областей Крыма от факторов миграции радионуклидов 90 Sr и 137 Cs.

Физико- географические области	Плотность загрязнения, Бк/м ²				Факторы миграции радионуклидов			
					Коли-	Физико-химические свойства почвы		
					чество			
					осадковмм			
					/год			
	⁹⁰ Sr 1985	⁹⁰ Sr 2006	¹³⁷ Cs 1985	¹³⁷ Cs 2006		рН	Карбонат- ность, %	Содержа- ние гумуса, %
Северо-								1 ywyca, 70
Крымская низменная степь	1,5-2	<2	2-2,5	<2	200-300	6,8- 8.8	3-14	2,4-3,0
Тарханкутская возвышенная равнина	1-2	<2	2-2,5	1-4	100-300	6,8- 8,3	3-18	2.2-3,2
Центрально- Крымская равнинная степь	1,5-2	<2	2-2,5	2-4	200-300	6,8- 8,3	14-18	2,2-3,2
Керченская холмисто- грядовая степь	1,5-2	<2	2,5-3	1-4	200-300	8,3- 9,1	7-30	0,6-0,9
Предгорная лесостепь	1,5-2	<2	2,5-3	2-4	300-600	7,0- 8,5	13-30	2,3-4,4
Главная горно- лугово-лесная гряда	1,5-2	<2	2,5-3	3-10	700-1200	7,0- 8,5	-	3-5
Крымское южнобережное субсредизе-мноморье	1,5-2,5	<2	2,5-4	4-10	250-700	6,4- 8,3	25-37	1,4-4

К 2006 году плотность загрязнения стронцием-90 на всей территории Крымского полуострова вновь составила 2 к $\rm Ke/m^2$, т.е. осталась на доаварийном уровне. Подобное очищение произошло в следствие более активного вытеснения из почв $\rm ^{90}Sr$, чем $\rm ^{137}Cs$ [2].

Таким образом, картина распределения плотности загрязнения долгоживущими радионуклидами цезия-137 и стронция-90 имеет сложный характер распределения и зависит от множества факторов как природных, так и антропогенных.

выводы

Широкий спектр форм и состава выброшенных при испытании ядерного оружия радиоактивных продуктов, изменение эффективной высоты выбросов, длительность выбросов, их немонотонный характер, а также неравномерная, пятнистая структура полей загрязнения чернобыльского происхождения и изменение метеорологических условий привели к формированию сложных картин полей радиоактивного загрязнения радионуклидами территории Крымского полуострова.

Плотность загрязнения территории Крымского полуострова $^{137}\mathrm{Cs}$ и $^{90}\mathrm{Sr}$ является результатом суммирования этих радионуклидов естественного происхождения и техногенных изотопов, образованных в связи с активной антропогенной деятельностью.

Пространственная неоднородность плотности загрязнения Крыма является следствием действия вышеуказанных факторов миграции в условиях ландшафтного разнообразия полуострова, расположенного на стыке умеренного и субтропического поясов, и зависит от множества факторов как природных, так и антропогенных.

Список литературы

- 1. Алексашкін І.В. Фактори і загальні закономірності поведінки важких металів у грунтах / Алексашкін І.В., Горбунов Р.В., Хіжняк Ю.С. // Вісник Запорізького національного університету: Збірник наукових статей. Біологічні науки. Запоріжжя: Запорізький національний університет, 2008. С. 11-19.
- . Анненков Б.Н. Основы сельскохозяйственной радиологии / Анненков Б.Н., Юдинцева Е.В. М.: Агропромиздат, 1991. 287 с.
- 3. Атлас. Україна. Радіоактивне забруднення. К.: МНС України, Інтелектуальні системи ГЕО, 2008.
- 4. Драган Н.А. Почвенные ресурсы Крыма. Научная монография / Драган Н.А. 2-е изд., доп. Симферополь: ДОЛЯ, 2004. 208 с.
- 5. Климат и опасные гидрометеорологические явления Крыма / Под ред. Логинова К.Т., Барабаша М.Б. Л.: Гидрометеоиздат, 1982. 310 с.
- 6. Климатический атлас Крыма / Приложение к научно-практическому дискуссионноаналитическому сборнику «Вопросы развития Крыма». – Симферополь: Таврия-Плюс, 2000. – 120 с.
- 7. Коваленко Г.Д. Радиоэкология Украины: Монография / Коваленко Г.Д., Рудя К.Г. К.: Издательско-полиграфический центр «Київський університет», 2001. 167 с.
- 8. Кравец А.П. Радиологические последствия радионуклидного загрязнения почв и растений / Кравец А.П. К: Логос, 2006. 180 с.
- 9. Подгородецкий П.Д. Крым: Природа. Справочное издание / Подгородецкий П.Д. Симферополь: Таврия, 1988. 192 с.

АНАЛИЗ ПЛОТНОСТИ ЗАГРЯЗНЕНИЯ РАДИОНУКЛИДАМИ 137CS И 90SR...

Алексашкін І.В., Кліменко А.М., Горбунов Р.В. Аналіз щільності забруднення радіонуклідами 137 Cs та 90 Sr фізико-географічних областей Криму /Алексашкін І.В., Кліменко А.М., Горбунов Р.В. // Учені записки Таврійського національного університету ім. В.І.Вернадського. Серія : Географія. — 2010 - T. 23(62). N. 1 - C.3-9.

Розглянуте забруднення Кримського півострова тривало життєвими радіонуклідами цезія-137 та стронція-90. Проаналізовано характер просторового розподілення щільності забруднення радіоактивними ізотопами та чинники його неоднорідності.

Ключові слова: атмосферні опади, глобальні випадання, тривало життєві радіонукліди, щільність радіонуклідного забруднення.

Aleksashkin I.V., Klimenko A.N., Gorbunov R.V. Analysis of the density's contamination radioactive nuclide 137 Cs and 90 Sr in physiographic areas in Crimea Aleksashkin I.V., Klimenko A.N., Gorbunov R.V. // Scientific Notes of Taurida V.Vernadsky National University. – Series: Geography. – 2010. – Vol. 23 (62). – No 1. – P.3-9.

The soiling the Crimean peninsula was considered by the long-living radioactive nuclide 134Cs and 90Sr. The nature of the spatial distribution density of the contamination by radioactive isotope was analyzed. Also was analyzed the reasons of spottiness.

Key words: the atmospheric precipitation, global fallouts, long-living radioactive nuclide, density radioactive nuclide contamination.

Поступила в редакцию 09.01.2010 г.