УЧЕНЫЕ ЗАПИСКИ

ТАВРИЧЕСКОГО НАЦИОНАЛЬНОГО УНИВЕРСИТЕТА им. В.И. ВЕРНАДСКОГО

Научный журнал

Специальный выпуск

Серия «География»

<u>Том 27 (66) № 4</u>

Таврический национальный университет им. В.И. Вернадского Симферополь, 2014 г.

ISSN 1606-3715

Свидетельство о регистрации – серия КВ № 15714-4185Р от 28 сентября 2009 года

Список научных специализированных изданий Украины: Постановление Президиума ВАК Украины № 1-05/2 от 10 марта 2010 года

Редакционный совет журнала «Ученые записки ТНУ»:

Багров Н.В. – д.г.н., проф., академик НАН Украины (главный редактор) Шульгин В.Ф. – д. хим.н., проф. (зам. главного редактора) Дзедолик И. В. – д.ф.-м. н., проф. (отв. секретарь)

Члены Совета (редакторы серий и разделов серий):

- 1. Бержанский В.Н. д.ф.-м.н., проф., ТНУ
- 2. Богданович Г.Ю. д. филол.н., проф., ТНУ
- 3. Вахрушев Б.А. д.г.н., проф., ТНУ
- 4. Гришковец В. И. д.х.н., проф., THУ
- 5. Казарин В.П. д. филол.н., проф., ТНУ
- Климчук С. В. д. э.н., доц., ТНУ
- 7. Копачевский Н.Д. д.ф-м.н., проф., ТНУ
- 8. Непомнящий А.А. д.и.н., проф., ТНУ
- 9. Подсолонко В.А. д.э.н., проф., ТНУ
- 10. Ротань В. Г. д.ю.н., проф., ТНУ
- 11. Темурьянц Н.А. д.б.н., проф., ТНУ
- 12. Шоркин А. Д. д.филос.н., проф., ТНУ

Состав редколлегии серии «География»:

Андрейчук В.Н. – д.г.-м.н., проф., Силезский ун-т, Польша Багров Н.В. – д.г.н., проф., ТНУ, акад. НАНУ (редактор серии) Боков В.А. – д.г.н., проф., ТНУ Вахрушев Б. А. – д.г.н., проф., ТНУ (зам. редактора), (vakhm@inbox.ru); Гродзинский М.Д. – д.г.н., проф., КНУ Ломакин П.В. – д.г.н., проф., МГИ НАНУ Позаченюк Е. А. – д.г.н., проф., ТНУ Скребец Г.Н. – к.г.н., доц., ТНУ (отв. секретарь) Топчиев А. Г. – д.г.н., проф., ОНУ Яковенко И. М. – д.г.н., проф., ТНУ

Технический редактор Петлюкова Е.А.

Печатается по решению Ученого Совета Таврического национального университета им. В.И. Верналского протокол № 9 от 25.09.2014

Подписано в печать 29.09.2014 Формат 70х100/16 15,11 усл. п. л., 7,13 уч.-изд. л. Тираж 100. Заказ 108/1 Отпечатано в информационно-издательском отделе ТНУ. пр. Вернадского, 4, г. Симферополь, 95007

«Вчені записки Таврійського національного університету ім. В.І. Вернадського»

Науковий журнал. Том 27 (66). № 4. География
Сімферополь, Таврійський національний університет ім. В.І. Вернадського, 2014.
Журнал заснований у 1918 р.
Адреса редакції: пр. Вернадського, 4, м. Сімферополь, 95007
Надруковано у інформаційно-видавницькому відділі Таврійського національного університету ім. В.І.Вернадського. пр. Вернадського, 4, г. Сімферополь, 95007
http://www.science.crimea.edu/zapiski/zapis_god.html

© Таврический национальный университет, 2014 г.

ПРЕДИСЛОВИЕ

Данный спецвыпуск журнала – это продолжение ежегодного научнометодического и справочно-аналитического сборника «Сейсмологический бюллетень Украины», издаваемого по результатам сейсмического мониторинга. В настоящем выпуске журнала представлена подробная информация обо всех сейсмических событиях, произошедших в 2014 г. на территории Украины и сопредельных с ней областях, генетически связанных геодинамическими процессами. К таким территориям относятся районы Черноморского бассейна, Карпат, Молдовы. Приведены каталоги и подробные данные о землетрясениях исследуемой территории, даны общие характеристики сейсмичности регионов за 2014 г. Для землетрясений Крымско-Черноморского региона традиционно исследованы спектральные и динамические параметры очагов, восстановленные по записям объемных сейсмических волн на региональных станциях Крыма, дан анализ их пространственно-временных особенностей. Кроме этой информации, помещены аналитические статьи по наиболее сильным, ощутимым землетрясениям регионов, распределению локальных вариаций сейсмической интенсивности от взрывных воздействий (на примере г. Феодосия), ретроспективному пересмотру оценок динамических параметров очагов серии землетрясений 1990 г. в районе с. Приветное (Крым).

Релколлегия

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

амплитуда смешения почвы. измеренная по Α (N-S, E-W) и вертикальной горизонтальной (Z)составляющим, мкм направления Αz азимут c эпицентра станцию, определенный по координатам эпицентра, град \mathbf{E} сейсмическая энергия, Дж длительность записи колебаний от момента вступления D продольной волны до полного прекращения колебаний, с i, e индексы четкости определения фаз (і – четко, е – нечетко) глубина очага, км h очаг находится в земной коре h=3.к. интенсивность землетрясения в пункте k в баллах по Ik шкале MSK-64 максимальная интенсивность сотрясений Imax K_{Π} энергетический класс землетрясения по номограмме Пустовитенко энергетический класс землетрясения по Кр номограмме Раутиан KD энергетический класс землетрясения, определенный по длительности записи (D) Kc энергетический класс, определенный по сейсмической коде **MLH** магнитуда, определенная по горизонтальным составляющим поверхностной волны по среднепериодной аппаратуре MLV, Ms, магнитуда, определенная по вертикальной составляющей MS поверхностных волн ml локальная магнитуда магнитуда, определенная по длительности колебаний (D) MD **MPV** магнитуда, определенная по вертикальной составляющей продольных волн mb, MPSP магнитуда, определенная по вертикальной составляющей продольных волн короткопериодного канала **MSH** магнитуда, определенная по горизонтальной составляющей поперечных волн (S) **MSM** магнитуда, определенная в максимальной фазе поперечной волны по Молдавской сети сейсмических станций Mwмагнитуда, определенная по значению сейсмического Mc магнитуда, определенная по сейсмической коде число данных, участвовавших в усреднении n

момент возникновения землетрясения

времена вступлений дифрагированных волн

времена вступлений прямых продольных и поперечных волн

 \mathbf{O}

Pg, Sg Pn, Sn

P, S	_	времена вступлений головных или рефрагированных волн
Pgm, Sgm, Pnm,	_	времена вступлений максимальных фаз продольных и
Snm, Pm, Sm		поперечных волн
(P), (S)	_	неуверенное определение типа волны
S-P	_	разность времен пробега поперечных и продольных волн, с
T	_	период колебания волны, с
α	_	азимут направления на эпицентр, определенный по
		амплитудам первых вступлений волн, град
Δ	_	эпицентральное расстояние, км
δh	_	погрешность определения глубины очага, км
δΚ	_	погрешность определения энергетического класса
		землетрясения
δt_0	-	погрешность определения времени возникновения
v		землетрясения, с
δφ, δλ	-	погрешности определения координат эпицентра, град
φ° Ν, λ° Ε	-	географические координаты эпицентра землетрясения, град

Принятые сокращения

названий сейсмических станций в соответствии со стандартом International Registry of Seismograph Stations

International Seismological Centre (ISC)

		_	
Сейсмические с	танции Крымской сети	Сейсмич	ческие станции Молдовы
ALU	Алушта	KIS	Кишинев
FEO	Феодосия	LEOM	Леово
KERU*	Керчь	SORM	Сороки
SUDU	Судак	GIUM	Джурджулешты
SEV	Севастополь	MILM	Милештий Мичи
SIM	Симферополь		
YAL	Ялта	Сейсмич	еские станции ИГ НАНУ
TARU* Тарханку	УT		·
	•	KIEV	Киев
		ODE*	Степановка (Одесская обл.)
Сейсмические с	танции Карпатской сети		, in the second of the second
	_	ЦОМЭ ГС Р	АН на Северном Кавказе
BERU	Берегово		
BRIU	Брид	ANN	Анапа
CHRU	Черновцы	AGIR	Агой
HOLU	Холмец	GL1R	Геленджик
HORU	Городок	KIV	Кисловодск
KMPU	Каменец-Подольский	LZRR	Лазаревская
KORU	Королево	RPOR	Красная поляна
KSV	Косов	SOC	Сочи
LVV	Львов	SHAR	Солнечная
MEZ	Межгорье	TPSR	Туапсе
MORS	Моршин		
MUKU	Мукачево		
NSLU	Нижнее Селище		
NDNU	Новоднестровск		
NDNU-1	Нышивцы временная		
NDNU-2	Шебутинцы временная		
NDNU-3	Розкопинцы временная		
RAK	Рахов		
SHIU	Схидныця		
STNU	Старуня		
TRSU	Тросник		
UZH	Ужгород		
STZU	Стужица		

^{* –} обозначения станций, не принятые в международном реестре

Встречающиеся в тексте сборника сокращения названий других сейсмических станций также соответствуют этим стандартным обозначениям.

Серия «География». Том 27 (66), № 2. 2014 г. С. 7–22.

УДК 550.348.435

СЕЙСМИЧНОСТЬ КРЫМА В 2014 ГОДУ

Свидлова В. А., Калинюк И. В., Бондарь М. Н., Козиненко Н. М., Сыкчина З. Н.

Отдел сейсмологии Института геофизики им. С.И. Субботина НАНУ, г. Симферополь, Республика Крым, Россия

E-mail: seismosilver@mail.ru

Приведены параметры действующей на сейсмических станциях сейсмометрической аппаратуры. Представлены карта эпицентров, таблица и график распределения числа землетрясений и энергетических параметров по районам региона. Всего в 2014 г. в регионе локализовано 119 землетрясений, что почти в 2 раза больше, чем в предыдущий 2013 год. При этом суммарная выделенная сейсмическая энергия оказалась ниже среднего уровня за предшествующие 10 лет наблюдений. 2014 год характеризовался активизацией Ялтинского района. Землетрясение с максимальным энергетическим классом K_{Π} =11.2, M_W =3.95 вызвало сотрясения с I=2–3 балла в г. Ялта. *Ключевые слова*: сейсмичность, сейсмическая станция, эпицентр, гипоцентр, энергетический класс.

ВВЕДЕНИЕ

Наблюдения за сейсмичностью — неотъемлемая часть мониторинга опасных явлений. Сейсмический мониторинг Крыма осуществляется с 1927 года.

В 2014 году сейсмическая обстановка в Крымско-Черноморском регионе контролируется сетью из семи стационарных сейсмических станций, расположенных на Крымском полуострове: «Симферополь», «Севастополь», «Ялта», «Алушта», «Судак», «Феодосия», «Керчь» и пунктами наблюдений «Тарханкут» и «Веселовка» (Рис. 1).

Непрерывные сейсмические наблюдения в течение года проводились на стационарных станциях Крыма и пункте «Тарханкут», который укомплектован цифровой сейсмической станцией, предназначенной для работы в полевых условиях в автоматическом режиме.

Точность определения координат землетрясений различна в отдельных сейсмоактивных районах Крымско-Черноморского региона, поскольку зависит от плотности и конфигурации расположения станций.

С целью повышения точности координат землетрясений в северо-западной части Крыма, с 20 августа 2014 года началась опытная регистрация сейсмических событий на пункте «Веселовка» (ϕ =45.37°N; λ =33.21°E; h=52 M) цифровой станцией с сейсмометром СК-1П (базовое название станции UK15, число отсчетов – 128 в секунду).

Записи, полученные на пункте «Веселовка», имеют хорошее качество с низким уровнем помех, более четкими вступлениями волн, чем на пункте «Тарханкут».

К сожалению, волновые картины землетрясений, зарегистрированных на пункте «Веселовка», невозможно использовать в сводной обработке, так как при расчетах кинематических параметров землетрясений выяснилось, что необходимо перепрограммирование станции UK15. Регистрация на пункте временно прекращена, несмотря на удачный выбор месторасположения станции.

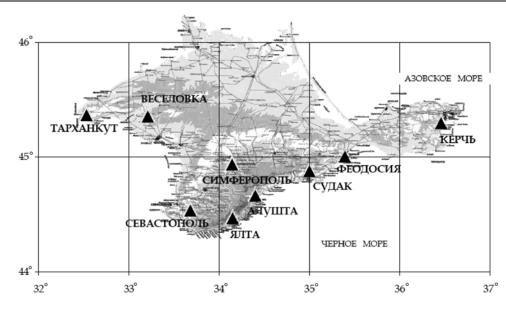


Рис. 1. Крымская сеть сейсмических станций в 2014 году.

1. СИСТЕМА НАБЛЮДЕНИЙ

Общие сведения о станциях приведены в таблице 1, а данные о регистрирующей цифровой аппаратуре – в таблице 2.

Таблица 1. Сейсмические станции Крыма (в хронологии их открытия), работавшие в 2014 г.

$N_{\underline{0}}$	Стані	ция		П	Начало	Ко	ордин	аты	Подпочва
	Название	Кс	Д	Дата открытия	цифровой	o° N	λ∘ E	$h_{\rm v}$, M	
	Пазвание	межд.	рег.	открытии	регистрации	ψ,1	л, Е	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1	«Феодосия»	FEO	Фдс	11.10.1927	06.09.2006	45.02	35.39	40	мергелистая глина
2	«Ялта»	YAL	Ялт	13.03.1928	05.07.2000	44.48	34.15	23.6	шиферные сланцы
3	«Симферополь»	SIM	Смф	14.05.1928	25.06.2000	44.95	34.12	275	нуммулитовый известнян
4	«Севастополь»	SEV	Свс	28.06.1928	03.09.2006	44.54	33.68	42	суглинки
5	«Алушта»	ALU	Алш	03.10.1951	19.07.2006	44.68	34.40	61	глинистые сланцы
6	«Судак»	SUDU	Суд	18.10.1988	29.07.2006	44.89	35.00	108	глинистые сланцы
7	«Керчь»	KERU	Кер	19.05.1997	06.03.2007	45.31	36.46	50	мшанковый известняк
8	«Тарханкут»	TARU		11.07.2012	11.07.2012	45.38	32.53	0	сарматский известняк

Все сейсмические станции Крыма оборудованы цифровой регистрирующей аппаратурой с различными техническими характеристиками (Табл. 2.), калибровочные кривые которых существенно отличаются друг от друга. Длительная эксплуатация цифровых сейсмических станций (ЦСС) в непрерывном режиме приводит к сбоям в работе и периодическим поломкам. Для поддержания

аппаратуры в рабочем состоянии требуется постоянный контроль, своевременная профилактика и возможность ремонта аппаратуры производителями ЦСС, что не всегда оперативно можно сделать из-за финансовых и других объективных обстоятельств.

Таблица 2. Основные параметры цифровых сейсмических станций Крыма в 2014 г.

Станция	Тип датчика	Группа каналов (каналы)	Частотный диапазон, Γu	Частота квантования, $\Gamma \mu$	Разрядность АЦП	Амплитудный динамический диапазон	Дата начала регистрации
«Севастополь»	СКМ-3	(N, E, Z)	0.2-10	64	12	70	20.08.2006 г.
	АЦСС_В2	(N, E, Z)	0.1-50	40	24	126	06.12.2011 г.
	(MI19)						
«Судак»	CKM-3	(N, E, Z)	0.2-10	64	12	70	15.10.2006 г.
	АЦСС_В2	(N, E, Z)	0.1-50	40	24	126	08.02.2011 г.
	(MI18)						(до 18.07.2014 г.)
«Симферополь»	СКД	BH(N, E, Z)	0.01 - 4	20	16	96	25.06.2000 г.
	CM-3	EH(N, E, Z)	0.1-20	100	16	96	(до 07.07.2014г.)
	АЦСС_В2	(N, E, Z)	0.1 - 50	40	24	126	
	$(MI1\overline{7})$						29.10.2010 г.
«Ялта»	АЦСС_В2	(N, E, Z)	0.1-50	40	24	126	27.07.2011 г.
	$(MI2\overline{0})$						
«Алушта»	ВЭГИК	(N, E, Z)	0.2 - 10	64	12	70	12.07.2006 г.
«Феодосия»	ВЭГИК	(N, E)	0.2 - 10	64	12	70	03.09.2006 г.
	CKM-3	(Z)	0.2 - 10	64	12	70	
«Керчь»	ВЭГИК	(N, E, Z)	0.2-10	64	12	70	07.03.2007 г.
«Тарханкут»	АЦСС	(N, E, Z)	0.1-50	40	24	126	11.07.2012 г.
	(MI21)						
«Веселовка»	UK15	(N, E, Z)	-	128	24	126	20.08.2014 г.

Региональные станции — «Севастополь», «Алушта», «Судак», «Феодосия» и «Керчь» оборудованы только короткопериодной аппаратурой (цифровыми сейсмическими станциями на базе микроконтроллера MSP430F149). Амплитудночастотные характеристики ЦСС «Судак» и «Алушта» приведены на рисунках 2, 3.

Аппаратурное оснащение региональной сети в настоящее время продолжает ухудшаться. Опорная станция «Симферополь» была оснащена аппаратурой SDAS [1] с цифровой регистрацией, имеющей комплекты короткопериодных ЕН и широкополосных длиннопериодных ВН каналов. За последние годы участились отказы станции различного характера. Электронные модули и программное обеспечение требуют специального дополнительного обслуживания, нередки случаи пропуска записи по неустановленным причинам.

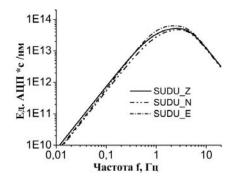


Рис. 2. Калибровочные кривые с/ст. «Судак».

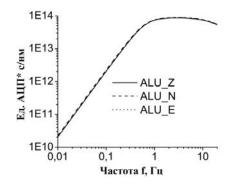


Рис. 3. Калибровочные кривые с/ст. «Алушта».

Электронным компонентам станции примерно два десятка лет, вышедшие из строя блоки не подлежат ремонту и восстановлению, т. е. станция морально и физически устарела и требует замены на более современные и совершенные технические средства для сейсмологических исследований. С 21 марта станция SDAS периодически функционировала с перебоями, а 7 июля 2014г. прекратила регистрацию.

В связи с трудностями ремонта ЦСС SDAS (НПП «Геотех», г. Обнинск), была произведена ее замена на ЦСС МІ17. Из руководства по эксплуатации ЦСС МІ17 известно, что передаточные характеристики трех каналов должны быть подобными. Амплитудный коэффициент подобия вертикальной составляющей, относительно горизонтальных каналов, был вычислен из автоматических ежемесячных калибровочных импульсов ЦСС МІ17.

На цифровых короткопериодных регистраторах MSP, созданных в Отделе сейсмологии [2], контроль времени выполняется с NTP сервера сети интернет. В течение 2014 г. на сейсмостанциях «Севастополь», «Керчь», «Феодосия» не было постоянного доступа к интернету, что негативно отразилось на качестве материалов регистрации. Помимо проблем со службой времени, участились пропуски в регистрации из-за

временных отключений подачи электроэнергии на региональных станциях «Алушта», «Феодосия», «Керчь».

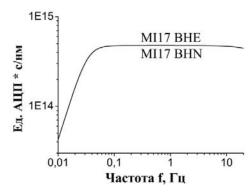


Рис. 4. Калибровочные кривые ЦСС МІ 17 с/ст. «Симферополь».

Наиболее нестабильно работала станция «Керчь», время отсутствия регистрации за год составило 18%.

2. АНАЛИЗ СЕЙСМИЧЕСКИХ ДАННЫХ

В работе [3] было показано, что существующая сеть сейсмических станций, даже без участия пункта «Тарханкут», обеспечивает представительную регистрацию землетрясений с K_{\min} =9 практически на всей территории Крымского региона. Для значительной части региона представительны землетрясения с K_{\min} = 8. В пределах региона в целом уровень представительности не изменился. Вынужденное переоборудование станций «Ялта» и «Симферополь», вероятно, повлияло лишь на площадь и конфигурацию областей в пределах изолиний K_{\min} =7 и K_{\min} =6.

Оценка динамических параметров сейсмических волн землетрясений выполнялась по материалам регистрации станцией SDAS («Симферополь») и короткопериодными цифровыми станциями MSP («Севастополь», «Алушта», «Судак», «Феодосия»).

Записи сейсмических событий цифровой аппаратурой АЦСС_В2 (МI18, МI19, МI20, МI21) используются не в полной мере из-за отсутствия амплитудночастотных характеристик данных каналов.

В связи с отсутствием прибора SDAS энергетические оценки землетрясений стали менее достоверными. Проанализируем результаты расчетов энергетического класса K_{Π} землетрясений за первый квартал года, взятые из регионального каталога и показанные в таблице 3. В графе 5 приведен интервал станционных определений K_{Π} , в графах 6 и 7 — названия станций с минимальным и максимальным значением энергетического класса.

Из таблицы следует, что энергетические оценки, определенные по записям станцией «Судак», систематически занижены относительно других станционных

значений. Без учета оценок класса на станции «Симферополь» среднее значение K_{Π} – менее надежное. Со времени постепенного ввода в действие регистраторов MSP, на региональных сейсмостанциях не проводились регулярные работы по контролю AЧХ. Значения энергетического класса, например, на самой удаленной станции «Керчь», иногда просто не реальные и, как правило, не берутся в расчет средних определений.

Таблица 3. Энергетический класс K_{Π} по данным цифровых станций

Дата	Время	Район	K_{Π}	Интервал	Ста	нция
	ч мин			классов	K_{\min}	K_{\max}
1	2	3	4	5	6	7
01.01	15 25	3	6.9±0.3/4	6.3-7.2	SUD	SIM
04.01	07 48	7	9.4±0.4/6	8.8-9.8	ANN	SIM
05.02	01 53	3	5.4±0.2/4	5.1-5.6	SUD	SEV
17.02	22 52	5	8.6±0.5/6	7.8–9.5	SUD	SIM
18.02	23 53	1	7.1±0.2/4	6.7–7.4	SEV	SIM
22.02	16 36	2	6.5±0.5/4	5.5-6.9	SUD	ALU
22.02	21 39	2	7.1±0.4/4	6.2-7.4	SUD	SEV
22.02	21 46	2	7.2±0.5/4	6.2-7.7	SUD	ALU
22.02	22 18	2	$8.0\pm0.5/4$	7.0-8.4	SUD	ALU
23.02	01 21	2	$7.5\pm0.5/4$	6.5–7.9	SUD	SEV
28.02	13 29	2	$7.7\pm0.3/4$	7.1-8.2	SUD	SIM
02.03	18 10	2	8.5±0.4/5	8.0-9.2	SUD	SIM
04.03	22.46	4	$6.8\pm0.5/5$	6.0-8.0	SUD	SIM
17.03	02 11	5	$7.8\pm0.4/5$	7.2-8.3	SUD	SIM
17.03	23 13	2	9.8±0.4/4	9.3-10.3	FEO	SIM
25.03	17 04	5	9.6±0.3/7	8.7-10.2	KER	SIM
29.03	05 41	2	8.6±0.4/4	7.9–9.2	SUD	SEV
30.03	07 55	6	8.2±0.1/4	8.0-8.3	SUD	SIM

Первичная интерпретация полученных цифровых материалов наблюдений попрежнему на всех сейсмических станциях выполняется по программному комплексу WSG [4]. Методика сводной обработки землетрясений региона подробно описана в [5]. Как обычно, в расчеты гипоцентров включены данные бюллетеней станции «Анапа». Для некоторых событий Керченско-Анапского района, Черноморской впадины и Азовского моря использовались волновые формы, полученные другими сейсмическими станциями России, расположенными на Кавказском побережье Черного моря: «Геленджик», «Лазаревское», «Туапсе», «Сочи», «Агой». Также привлекались времена вступлений первичных волн, взятых из электронного оперативного каталога EMSC [6], на станциях Северной Турции: ERBA, HAVZ, ВZК, DIKM; Румынии: TLCR; России: KIV, NEY, KBZ, для расчета параметров землетрясений Черноморской впадины, Керченско-Анапского и Ялтинского районов.

3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

В результате сводной обработки полученной сейсмологической информации составлены региональный каталог и подробные данные обо всех землетрясениях, которые представлены в таблице 4 и таблице 5 (таблицы 4 и 5 в виду их большого объема помещены в конце настоящей статьи). Первичные данные сейсмических наблюдений получены при активном участии заведующих стаций: Г.П. Антонюка, В.А. Антонюк, И.В. Курьяновой, Ж.Н. Лукьяновой, А.В. Подвинцева, А.В. Рослякова.

Для 14 событий Б.Г. Пустовитенко и Э.Э. Эреджеповым получены спектральные и динамические параметры очагов, в том числе магнитуды по сейсмическому моменту Mw.

Каталог Крымско-Черноморского региона за 2014 г. включает сведения о 119 землетрясениях энергетических классов K_{Π} =4.3÷11.2.

В 2014 г. наблюдался подъем сейсмической активности. Общее число землетрясений N=119 увеличилось против N=64 в предыдущем году и в 1.7 раз больше среднего Nср=69 за десятилетний период наблюдений (2004—2013 гг.), но уровень выделившейся энергии остается низким. Суммарная сейсмическая энергия, высвободившаяся в очагах землетрясений региона в 2014 г., равна $\Sigma E=191.342\cdot10^9~\mathcal{Д}\mathcal{M}$, то есть в 4.4 раза меньше среднего значения — $\Sigma Ecp=840.212\cdot10^9~\mathcal{Д}\mathcal{M}$ (таблица 6), хотя возросла в 3.6 раза по сравнению с годовой энергией 2013 года ($\Sigma E=52.817\cdot10^9~\mathcal{Д}\mathcal{M}$) [7].

Таблица 6. Распределение числа землетрясений по районам и энергетическим классам K_{Π} , суммарная сейсмическая энергия за 2004—2014 гг.

Год					К	ÎП					N_{Σ}	ΣE ,
												10 ⁹ Дж
	4	5	6	7	8	9	10	11	12	13		
2004		3	16	12	9	7	2	1			50	57.202
2005		1	7	7	7	3	2		1		28	519.131
2006	1	2	8	15	6	8	1	1			42	215.342
2007		2	7	16	11	7	4		1		48	682.751
2008		2	11	16	15	11	5			1	61	5067.368
2009		17	60	43	26	8	5	2			161	348.845
2010		6	18	32	22	10	3				91	32.684
2011		11	24	23	20	7	5	2			92	144.452
2012		3	6	14	16	9	3		1		53	1288.052
2013		9	14	18	12	5	6				64	52.817
Сумма	2	58	173	189	147	75	32	7	3	1	690	8408.344
Среднее												
значение	0.2	5.8	17.3	18.9	14.7	7.5	3.2	0.7	0.3	0.1	69	840.864
2014	2	24	27	33	18	11	3	1			119	191.342

Карта эпицентров всех событий за 2014 год показана на рисунке 5, а в таблице 7 отражены сведения о распределении числа землетрясений по энергетическим классам K_{Π} и суммарной сейсмической энергии ΣE по районам.

По сравнению с долговременными оценками число зарегистрированных землетрясений существенно больше, но пространственное распределение их эпицентров в основном традиционно: максимальная плотность эпицентров просматривается в центральной части региона, Ялтинском (\mathbb{N}^2) и Алуштинском (\mathbb{N}^3) районах, значительное количество эпицентров сосредоточено в Керченско-Анапском районе (\mathbb{N}^5). Несколько иначе, чем в обычный слабоактивный год, расположены эпицентры слабых событий Севастопольского района (\mathbb{N}^1) – вблизи берега и на суше. Также привлекает внимание эпицентр с K_{Π} =9 в центре Азовского моря.

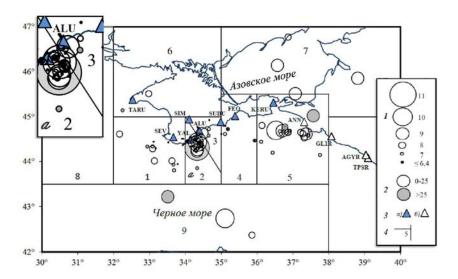


Рис. 5. Карта эпицентров землетрясений Крыма в 2014 г. l – энергетический класс K_{Π} ; 2 – глубина h гипоцентра, κm ; 3 – сейсмическая станция: a) Крым δ) Северный Кавказ; 4 – граница района.

Таблица 7. Распределение числа землетрясений по энергетическим классам K_{Π} и суммарная сейсмическая энергия ΣE по районам за 2014 год

№	Район				Ì	K_{Π}				N_{Σ}	$\Sigma E, 10^9$
		4	5	6	7	8	9	10	11		Дж
1	Севастопольский	1	3	4	4	4				16	0.3428
2	Ялтинский	1	16	16	11	4	3	1	1	53	166.2210
3	Алуштинский		4	4	3		1			12	2.0269
4	Судакско-Феодосийский		1	3	3					7	0.0178
5	Керченско-Анапский				11	7	3	1		22	5.8480
6	Степной Крым				1	1				2	0.1685
7	Азово-Кубанский					1	3			4	3.6855
8	Северо-Западный									0	0
9	Черноморская впадина					1	1	1		3	13.0314
	Всего	2	24	27	33	18	11	3	1	119	191.3419

Самое сильное землетрясение года с K_{Π} =11.2, Mw=3.95 произошло 2 марта в $03^h34^m28.3^s$ в **Ялтинском** районе (№2). Процесс высвобождения сейсмической энергии этого района в течение 12 месяцев показан на рисунке 6.

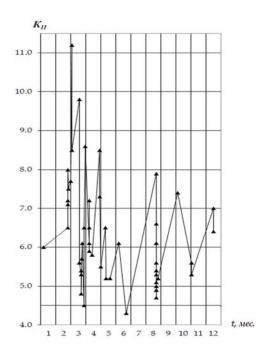


Рис. 6. Временной ряд землетрясений Ялтинского района.

Главный толчок предварялся с 22 по 28 февраля шестью форшоками энергетических классов K_{Π} =6.5–8.0 с глубиной очагов h=18–27 κM . Глубина основного толчка h=28 κM , первого афтершока с K_{Π} =8.5, последовавшего через 15 часов – h=26 κM .

Афтершоковая активность прослеживалась до 16 декабря, сейсмическая энергия при этом высвобождалась неравномерно: разрозненно и «пакетами», с некоторой миграцией очагов и варьирующей глубиной.

Первая группа землетрясений с 17 по 29 марта энергетических классов K_{Π} =4.5–9.8 произошла *севернее главного толчка* на меньшей глубине, h=7–19 κm . Эпицентральное расстояние от Ялты равно 16 κm для землетрясения с K_{Π} =9.8.

С 6 апреля толчки опять углубились до h=22–28 км. События с 6 апреля по 27 апреля (вторая группа очагов) расположены южнее основного толчка, Δ =32 км (K_{Π} =8.5).

Третья компактная по времени группа событий наблюдалась с 20 по 25 августа в непосредственной близости от Ялты. Их глубина h=9-16 κM , энергетические классы K_{Π} =4.7-7.9; координаты эпицентров *северо-западнее основного толчка*, Δ =8 κM (K_{Π} =7.9). Направление миграции центров афтершоковой активности проиллюстрировано на рисунке 7. Звездочкой показано положение эпицентра

главного толчка.

Из всей совокупности событий, часть (61%) с низкими классами K_{Π} =4.3–6.1 хорошо записана только двумя станциями.

Облако эпицентров землетрясений ориентировано субмеридионально и ограничено следующими координатами: ϕ =44.21÷44.52N; λ =34.06÷34.42E

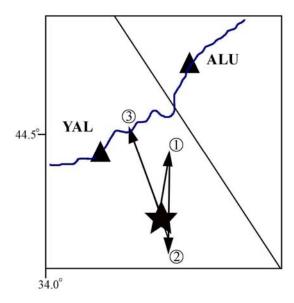


Рис. 7. Миграция очагов групп афтершоков. Цифры – последовательные группы очагов.

Главный толчок максимального класса K_{Π} =11.2 с координатами гипоцентра: ϕ =44.30°N, λ =34.33°E, h=28 κm , ощущался на Южном берегу Крыма. Сведения о макросейсмических проявлениях этого события, собранные сотрудниками станций «Ялта» и «Алушта» по телефону, имеются только для трех населенных пунктов: г. Ялта (Δ =25 κm), п. Малый маяк (Δ =36 κm), г. Алушта (Δ =43 κm). Звонки поступили от жителей 4–6 этажей многоэтажных домов. Число сообщений небольшое, так как землетрясение произошло рано, в 6 μ 4 μ 4 μ 4 μ 5 μ 7 μ 8 μ 8 μ 8 μ 9 μ

Это ощутимое Крымское землетрясение 2 марта 2014 года было отмечено 122 сейсмическими станциями мира. Самая удалённая из них, станция YKA (Йеллоунайф, административный центр Северо-Западных территорий Канады), расположена от эпицентра землетрясения на расстоянии 7842 κm . Для него были получены значения таких динамических параметров, как магнитуда по уровню коды волн Mc, локальная магнитуда MSH по максимальной амплитуде поперечной S-волны и моментная магнитуда Mw.

Среднее значение станционных определений локальной магнитуды MSH, другие

вышеперечисленные магнитуды помещены в таблице 8. Также в таблице приведены магнитуды по данным различных сейсмологических агентств. Из таблицы следует, что значения магнитуд по поверхностным волнам (MS, ML) и уровню коды (Mc) ниже других определений. Сравнение магнитуд по объемным волнам (MSH, mb) по данным разных международных агентств показывает незначительные расхождения результатов.

Таблица 8. Магнитудные оценки землетрясения 2 марта 3 $\it u$ 34 $\it mun$ 2014 года

Источник			Магн	итуды		
	MSH	MS	ML	Mw	Мс	mb
Цифровая сеть Крыма	3.9			3.95	3.3	
Международные агентства:						
IDC		2.7	3.3			3.5
SIGU						3.5
GFZ						4.0
MOS						3.8

На рисунке 8 представлены гистограмма и график, отражающие распределение числа зарегистрированных землетрясений и их энергии по районам.

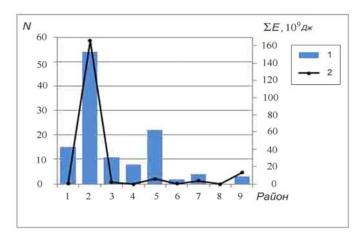


Рис. 8. Распределение числа землетрясений по районам в 2014 г.: I — число землетрясений N; 2 — ΣE .

Как следует из рисунка, экстремальные значения числа землетрясений и их энергии относятся ко второму району. Таким образом, изменение сейсмического режима в регионе связано в основном с активизацией **Ялтинского** района (№2), в очагах землетрясений которого высвободилось 86.9% от общей сейсмической энергии (таблица 7). Всего в Ялтинском районе зарегистрировано 53 землетрясения энергетических классов K_{Π} =4.3–11.2, из них 16 ниже представительного уровня, который меняется в границах этого района от K_{\min} =6 до K_{\min} =8. Только один

эпицентр, расположенный в море, на расстоянии 72 км от Ялты нельзя отнести к афтершоковой последовательности, описанной выше.

Рассмотрим особенности сейсмичности других районов. В **Севастопольском** районе (№1) зарегистрировано 16 землетрясений с K_{Π} =4.3–8.1, четыре из них представительного уровня K_{\min} =8. Эпицентры всех событий рассеяны в море и на суше на расстояниях 18–121 κM от станции «Севастополь» при глубинах h=7–35 κM .

- В **Алуштинском** районе (№3) произошло 12 землетрясений с K_{Π} =4.5–9.3, восемь из них ниже представительного уровня K_{\min} =7. Как всегда часть очагов (4) находится на прибрежной территории вблизи Алушты, а остальные восемь в море на расстоянии 9–21 κm . Глубина всех событий h=5–35 κm .
- В Судакско-Феодосийском районе (№4) определены параметры только семи непредставительных событий с K_{Π} =4.9–6.8 (K_{\min} =8). Их эпицентры удалены в море на расстоянии Δ =15–89 κM от Судака при глубинах h=12–29 κM .
- В **Керченско–Анапском** районе (№5) Крымская сеть зарегистрировала 22 землетрясения с K_{Π} =6.8–9.6 на глубинах от h=4 до h=33 κm , только восемь из которых представительны (K_{\min} =8 и K_{\min} =9). Принципиальное отличие сейсмичности района состоит в том, что значительно большая часть событий ниже представительного энергетического уровня.

В слабоактивном районе **Степной Крым** (№6) отмечено два события: первое с K_{Π} =8.2, h=21 κM и второе с K_{Π} =7.0, h=35 κM , каждое — вне границы представительной регистрации (K_{\min} =9 и K_{\min} =8).

Интерес представляет активность **Азово-Кубанского** района (№7). Здесь реализовано четыре землетрясения с K_{Π} =7.8–9.4, что больше обычного, три из них представительного уровня (K_{\min} =9). Ранее не отмечено очагов в центре Азовского моря, далеко от береговой линии. Примечательно, что это землетрясение с K_{Π} =9.4 зарегистрировали все станции сети, несмотря на удаленность и маленькую глубину очага, h=6 κM .

В Северо-Западном районе (№8) наблюдается полное затишье.

В **Черноморской впадине** (район №9) зарегистрировано три землетрясения с K_{Π} =8.1–10.1, на глубинах h=5–34 κM , одно из них ниже представительного уровня (K_{\min} =9). Черноморская впадина на втором месте среди районов региона по количеству высвобожденной энергии, что обеспечено сейсмическим толчком энергетического класса K_{Π} =10.1

ЗАКЛЮЧЕНИЕ

Собранная в ходе мониторинга информация позволила получить картину сейсмического режима в Крымско-Черноморском регионе: карту эпицентров, каталог землетрясений с основными кинематическими и динамическими параметрами, особенности сейсмичности отдельных районов, описание самого сильного землетрясения года и его афтершоковой последовательности.

В разделе 2 показано, что требуется непрерывное совершенствование средств наблюдения. Сформировалась техническая задача — восстановление качественных наблюдений на северо-западе региона. Требуют решения актуальные проблемы —

необходимость организации современной непрерывной передачи цифровых сейсмических данных с удаленных станций, хранение сейсмологической информации и создание баз данных.

Таблица 4. Каталог землетрясений крымско-черноморского региона за 2014 г. (Составители: Антонюк Г. П., Антонюк В. А., Курьянова И. В., Лукьянова Ж. Н., Подвинцев А. В., Росляков А. В.)

В	1			ікноі		Я		оорди				уби		Энер	эгеті	ичес	кий	Район		агни	
	зем	илет	ряс	ения	t_0		Э	пицен	тра		О	чага	a		кла	cc				гуда	i
месяц	число	час	МИН	сек	δt_0	C_t	$\phi^{\circ}N$	γ $\circ N$	δφ, δλ	C_{Φ}	h , κM	δh , κM	C_h	$K_{II}[9]$	δK	и	C_K		Mw	Mc [10]	MSH
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	1	15	25	2.3	0.5	1	44.59	34.43	0.02	2	14	5	2	6.9	0.3	4	1	3			
1	1	15	36	36.7	0.5	1	44.55	34.44	0.03	3	10	2	3	5.6	0.4	3	1	3			
1	1	21	8	1.4	1.0	2	44.60	34.41	0.08	4	13	9	3		0.1	2	1	3			
1	2	3	26	13.5	1.0	2	44.60	34.41	0.08	8	13	9	5	4.5	0.5	1	1	3			
1	4	7	48	0.3	0.5	2	46.14	36.57	0.10	4	6	3	3	9.4	0.4	6	1	7	3.5	2.9	3.3
1	6	2	52	17.6	2.0	2	44.25	34.48	0.05	-	15	15	4	6.0	0.5	2	1	2			
1	13	17	54	18.6	0.2	2	44.52	37.32	0.01	4	13	1	3	7.6	0.5	3	1	5			
2	5	1	53	31.9	0.6	2	44.77	34.34	0.04	4	20	4	3	5.4	0.2	4	1	3			
2	9	0	27	33.9	1.0	2	44.61	35.01	0.05	6	20	20	4		0.2	2	1	4			
2	17	22	52	0.7	0.2	2	44.68	36.7	0.02	1	4	2	3		0.5	6	1	5			
2	18	23	53	31.5	0.5	1	44.33	33.09	0.03	2	7	2	3	7.1	0.2	4	1	1			
2	22	16	36	57.1	0.7	2	44.41	34.39	0.04	4	27	6	3		0.5	4	1	2			
2	22	21	39	46.7	0.2	1	44.39	34.41	0.04	2	23	4	2	7.1	0.4	4	1	2			
2	22	21	46	33.5	0.2	1	44.37	34.42	0.01	2	18	1	2	7.2	0.5	4	1	2			
2	22	22	18	48.3	0.2	1	44.38	34.41	0.01	2	23	1	2	8.0	0.5	4	1	2			
2	23	1	21	20.3	0.2	1	44.39	34.41	0.01	2	22	1	2	7.5	0.5	4	1	2			
2	28	13	29	48.5	0.2	1	44.37	34.42	0.02	2	20	2	2	7.7	0.3	4	1	2			
3	2	3	34	28.3	0.3	1	44.30	34.33	0.01	2	28	1	2	11.2	0.2	2	1	2	4.0	3.3	3.9
3	2	18	10	25.9	0.3	1	44.26	34.34	0.02	2	26	3	2	8.5	0.4	5	1	2	2.9		
3	4	6	57	7.0	0.2	2	43.80	33.69	0.05	4	9	5	3	7.3	0.4	2	1	1			
3	4	9		58.7	0.2	2	44.65	36.87	0.05	5	20	5	3	7.7	0.4	3	1	5			
3	4	22	46	35.2	0.2	2		35.11	0.02	5	20	5	3	6.8	0.5	5	1	4			
3	12	13	32	49.4	0.7	2	44.28	33.09	0.03	3	10	4	3	,	0.2	3	1	1			
3	17	2	11	49.0	0.2	2	44.77	36.78	0.07	1	26	5	3	7.8	0.4	5	1	5			
3	17	23	13	36.0	0.2	1		34.34	0.01	2	19	1	2	9.8	0.4	4	1	2	3.3		3.0
3	17	23	15	3.6	0.5	2	44.38	34.42	0.03	5	10	6	3		0.5	2	1	2			
3	18	0	4	9.8	0.5	2		34.40	0.03	4	12	8	3		0.1	2	1	2			
3	18	0	7	24.6	1.4	2	44.36	34.40	0.03	4	7	3	3		0.1	2	1	2			
3	21	18	45	46.4	0.1	2	44.45	34.07	0.05	4	15	10	4		0.5	1	1	2			
3	21	19	26	6.1	0.2	2	44.45	34.07	0.05	4	15	10	4	5.4	0.5	1	1	2			1]

																П	роло	лжение	таб	пип	ы 4.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
3	21	20	12	9.8	0.1	2		34.06		4	15	10	4	4.8		1	1	2	20	21	
3	22	19	44	3.2	0.1	2		34.06		4	15	10	4		0.5	1	1	2			
3	22	19		30.7	0.2	2		34.07		4	15	10	4		0.5	1	1	2			
3	23	11		38.5	0.2	2		34.07	-	4	15	10	4		0.5	1	1	2			
3	23	16		44.4		2		36.64		5	13	2	3	7.4		3	1	5			
3	25	17		40.5		1		36.53		3	13	7	3	9.6		7	1	5	3 3	29	3.2
3	27	3		40.3		2		34.07		8	15	10	5	4.5		1	1	2	3.3	2.7	3.2
3	27	10		45.7	0.2	2		34.07		4	10	15	4	6.5		1	1	2			
3	29	5		21.1		1		34.33		2	19	1	2	8.6		4	1	2	3.1		
3	30	7		59.1		1		32.98		1	21	1	3	8.2		4	1	6	3.1		
4	2	16		45.3		2		33.12		5	20	20	4		0.5	1	1	1	5.1		
4	6	20	47		0.3	1		34.26		3	25	2	3	6.1		3	1	2			
4	6	20		13.2		1		34.28		3	23	2	3	7.2		4	1	2	2.6		
4	6	23				1		34.29		2	23	2	2		0.1	4	1	2	2.0		
4	6	23	5			1		34.29		3	20	2	3	5.9		2	1	2			-
4	13	20		53.8		2		34.31		4	21	3	3	5.8		3	1	2			
4	18	6		57.0		2		37.57		4	33	8	3		0.1	2	1	5			
4	18	20		24.9		1		35.19		2	19	3	2	6.6		4	1	4			
4	18	20				2		35.19		8	19	3	5	5.8		3		4			
4	18	22	17	40.4				35.19		3	29	5	3		0.2	5	1	4			
\vdash		_				1					25	3	3								
4	24 27	6		57.0 33.6		2		36.91 34.33		5	22	3	2		0.3	5	1	5 2	2.0	1 0	
4		2				1				2					0.2				2.9	1.8	
4	27	3		20.9		1		34.31		3	22	13	3		0.1	4	1	<u>2</u> 5			
4	28	2				2		36.12		5	7	3	3	7.4		4	1		2.4	2.7	2.0
4	28	<u>6</u>				1		34.47		2	22	1	2		0.3	4	1	3	3.4	2.7	2.9
5	1		3			2		34.42	-	4	24	10	3	5.5		2	1	2			
5	2	4		54.5		2		36.74		5	18	5	3		0.3	2	1	5			
5	5	18	39	5.2	0.5	2		37.76		5	5	5	3	7.4		3	1	5			
5	9	10		23.3	0.2	1		34.33		1	28	1	3		0.1	3	1	2			
5	10	15		35.9		2		34.01		4	15	10	4	5.2		1	1	2			
5	19	2		48.7	0.5	2		34.25		4	15	10	4	5.2		1	1	2			
5	26	11		52.0		2		33.67		5	27	7	3	6.9		2	1	1			
5	30	12		33.7	0.4	2		33.14		4	20	20	4	7.5		1	1	1			
6	5	16		46.3	0.2	2		34.38		4	27	5	3		0.2	3	1	2			
6	5	20		37.8	0.2	2		35.94		5	12	5	3	6.6		4	1	4			
6	6	19	52	19.0	0.2	2	44.46	35.94	0.05	8	12	5	5	6.2		2	1	4			
6				4.7						4	34	3	3	8.5		4	1	9			
6				2.0			44.68			3	25	3	3	7.1		4	1	5			
	15			58.8			44.92			5	5	2		5.0			1	3			
6				4.2			44.69			3	26		3	7.1		3	1	5			
6				8.6			44.42					15	4	4.3			1	1			
6				9.8			44.33			7		15	4	4.3		1	2	2			
6		5		26.0			44.71				10	6	3	8.3		4	1	5			
6				49.9		2	44.29			5	15	15	3	5.6		1	1	1			
6	30			43.1			45.85				9	3	3	8.9			1	7	3.5		
7	1	21	23	12.1	0.1	1	44.80	36.14	0.10	1	24	4	3	8.1	0.1	6	1	5			

СЕЙСМИЧНОСТЬ КРЫМА В 2014 ГОДУ

																П	родо	лжение	таб.	лиц	ы 4.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
7	7	21	22	2.9	0.2	2		36.44	0.10	4	5	4	3	6.8	0.3	4	1	5			
7	10	23	49	25.3	0.2	2	44.54			4	18	2	3		0.2	4	1	3			
7	11	22	35	1.3	0.8		44.61			1	23	4	3		0.3	5	1	5			
7	18	9	7	2.6	0.2	2	45.14			4	35	2	3	7.0		3	1	6			
7	25	20	48	18.4	0.2	2	44.57			5	19	1	3	7.2	0.3	3	1	5			
8	20	17		27.2	0.3	1		34.25		2	15	1	2	7.9	0.2	3	1	2	2.8		
8	20	22	14	56.8	0.2	1		34.27		2	13	3	2	6.1		3	1	2			
8	20	22	16	6.6	0.5	2	44.45	34.31	0.03	5	10	6	3	4.9	0.4	2	1	2			
8	20	23		34.4	0.8	2	44.49	34.28	0.04	4	15	3	3	5.6	0.1	2	1	2			
8	20	23	16	17.4	0.5	2	44.48	34.26	0.03	5	16	3	3	4.7	0.1	2	1	2			
8	21	0		26.7	0.5	2		34.26		5	16	4	3	4.9	0.3	2	1	2			
8	21	2	46	56.0	0.5	2		34.27		5	14	6	3	5.4	0.1	3	1	2			
8	21		37	45.1	0.5	2	44.47			5	16	4	3	6.1	0.1	3	1	2			
8	21	6		34.5	0.5		44.47			5	16	4	8		0.5	1	1	2			
8	21	7	7	32.9	0.5	2	44.48			5	13	4	3	5.4		3	1	2			
8	21	18	58	4.5	0.5	2	44.48	34.27	0.04	3	16	5	3	6.6	0.3	4	1	2			
8	21	19		44.2	0.5	2		34.30		5	13	7	3		0.2	2	1	2			
8	21			12.1	0.5	2		34.32		5	9	5	3		0.1	2	1	2			
8	25	11		12.8		2	44.49	34.29	0.04	5	14	4	3	5.2		2	1	2			
8	25	19		29.5	0.2	2	44.60	37.44	0.01	5	19	1	3	7.2	0.2	3	1	5			
8	28	9	59	14.5	0.2	2		37.22		5	16	1	3	8.0	0.1	3	1	5			
9	5	1	48	40.3	0.2	2	44.61	32.17	0.06	5	10	5	3	8.1	0.1	4	1	1			
9	7	0	34	25.4	0.2	2	44.61			4	10	5	3	7.0	0.8	2	1	5			
9	12	3		54.3			44.72			4	19	5	3		0.3	3	1	3			
9	14	0		49.3		1	44.61			3	17	3	3	5.9	0.4	3	1	3			
9	18	11	13			2	44.62			3	25	3	3	7.9		4	1	5			
9	20	23	56	51.2		1		32.94		3	27	1	3	6.9		3	1	1			
10	4	23		31.3	0.4	1		34.34		2	25	1	2	7.4		5	1	2			
10	6	14	37	15.5	0.1	2	44.50	33.91	0.15	6	15	15	4	4.8	0.5	1	1	1			
10	7	18		42.4	0.5	2		35.86		4	23	5	3	8.1		3	1	9			
10	18	15	34	54.0	0.6	1		35.11		1	5	3		10.1	0.3	5	1	9	3.7	3.5	3.7
11	1	21		50.4	0.5	2	44.50			5	23	4	3	5.6		3	1	2			
11	1	21		59.0	0.5	2		34.32		5	23	4	3		0.2	3	1	2			
11	3	23		36.5	0.5		43.94			5	35	5	3		0.4	2	1	1			
11	9	4		13.7	0.2	2	45.51			5	25	6	3		0.2	4	1	7	3.1		
11	18	1	26	20.6		2	44.75			4	20	1	3	5.6		3	1	3			
12	3	21		45.2			46.77			5	10		3			4	1	7			
12	5	21		22.4	-		44.01		_	1	23	1	3	8.0		5	1	1			
12	6			55.3		2	44.50			6	10	10	4	5.4		1	1	1			
12	16			32.7		1	44.43			1	22	1	3	7.0		4	1	2			
12	19			59.3		2	44.38			4	22	2	3	6.4		3	1	1			
12	20			42.4		1	44.58	34.65	0.03	3	35	2	3	7.2		2	1	3			
12	30	13		43.6		2	44.36	33.93	0.03	4	7	6	3	6.1		4	1	1			

Приложение к таблице 4. Способы определения основных параметров землетрясений

№ спос.	Время в очаге, <i>Ct</i>	Координаты эпицентра, <i>С</i> ф	Глубина очага, <i>Ch</i>	Энергетический класс, <i>Ck</i>
1	Определено по графику Вадати	Определены по n>4		Определен по А/Т по региональной номограмме Кп [9]
2	Определено по годографам	Определены по n=4	Определена способом Вадати определения координат эпицентра и глубины	Определен по длительности записи [11]
3		Определены по n=3, m≥1	Определена из годографа	
4		Определены по n=2, m≥1	Присвоено среднее значение глубины для региона	
5		Определены по n=1, m≥2	Присвоено значение глубины для основного толчка (афтершоки, форшоки)	
6		Определены по n=1, m≥1 и энергетическим соображениям		
7		Определены по n=1 и азимуту		
8		Присвоены параметры основного толчка		

 ${\sf n}-{\sf количество}\ (t_{\sf S}\!-\!t_{\sf P})\ {\sf m}-{\sf количество}\ P$ или S фаз

Таблица 5. Подробные данные о землетрясениях Крыма за 2014 г.

Ī	Стан-	Δ,	Λ	Фаза		Bpe	МЯ	Т,		А, мкм		Кп	D,	KD	Пантононна
	ция	км	Az	Фаза	ч	м	С	c	N-S	E-W	Z	[9]	c	[11]	Примечания
ſ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

№ 1. 1 января. Черное море, район 3

0=15ч 25мин 2.3с, φ =44.59°N, λ =34.43°E, h=14км, K_{Π} =6.9±0.3(4), KD=7.1(4)

ALU 11 347 -iPg 15 25 5.0 ALU Pgm 15 25 5.1 0.20 0.26 ALU eSg 15 25 7.3 ALU Sgm 15 25 7.5 0.22 0.37 6.8

1												П	родол	іжен	ие таблицы :
SIM	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SIM Sgm 15 25 16.4 Sgm 15 25 17.8 0.50 0.032 SIM Sgm 15 25 17.8 0.032 0.052 7.2 24 6.7 SUDU Sgm 15 25 11.2 SUDU Sgm 15 25 11.2 SUDU Sgm 15 25 11.8 SUDU Sgm 15 25 20.2 0.41 0.009 SUDU Sgm 15 25 20.2 0.41 0.009 SUDU Sgm 15 25 20.2 0.36 0.085 7.1 32 7.2 SEV Sgm 15 25 19.8 SUDU Sgm 15 25 19.8 SUDU Sgm 15 25 19.9 0.22 0.006 SEV Sgm 15 36 39.4 SuDU Sgm 15 36 39.4 SuDU Sgm 15 36 39.4 SuDU Sgm 15 36 41.7 SuDU Sgm 15 36 45.9 0.22 0.051 SuDU Sgm 15 36 45.9 0.15 SuDU Sgm 15 36 45.5 SuDU Sgm 15 36 45.9 0.15 SuDU Sgm 15 36 45.9 0.15 SuDU Sgm 15 36 45.9 0.15 SuDU Sgm 15 36 54.5 0.42 0.004 SUDU Sgm 15 36 54.5 0.33 0.002 To 0.001 SUDU Sgm 15 36 54.5 0.33 0.002 To 0.001 SUDU Sgm 15 36 54.5 0.33 0.002 To 0.001 SUDU Sgm 15 36 54.5 0.33 0.002 To 0.002 SuDU SuDU Sgm 15 36 54.5 0.33 0.002 To 0.002 SuDU SuDU Sgm 15 36 54.5 0.33 0.002 To 0.002 SuDU SuDU Sgm 15 36 54.5 0.33 0.002 To 0.002 SuDU SuDU SuDU Sgm 15 36 54.5 0.33 0.002 SuDU SuDU SuDU Sgm 15 36 54.5 0.33 0.002 SuD	ALU			Sgm	15	25	7.5	0.28		0.31			30	7.1	
SIM	SIM	47	327	ePg	15	25	9.9								
SIM	SIM			eSg	15	25	16.4								
SUDU 56 52 +iPg 15 25 11.6 0.12 0.013 SUDU eSg 15 25 11.6 0.12 0.013 SUDU eSg 15 25 18.8 15 25 20.2 0.41 0.009 SUDU sgm 15 25 20.2 0.34 0.085 7.1 32 7.2 SEV sgm 15 25 11.8 15 25 19.9 0.006 6.3 29 7.5 SEV sgm 15 25 19.9 0.22 0.006 6.3 29 7.5 SEV sgm 15 25 19.9 0.22 0.006 6.3 29 7.5 SEV sgm 15 36 39.5 0.22 0.006 6.3 29 7.5 ALU 15 347 -iPg 15 36 39.4 34.44°E, h=10κm, Km=5.6±0.4(3), kD=6.1(3) 5.7	SIM			Sgm	15	25	17.8	0.50	0.032						
SUDU	SIM			Sgm	15	25	17.8	0.23		0.052		7.2	24	6.7	
SUDUU eSg 15 25 18.8 SUDUU Sgm 15 25 20.2 0.41 0.009 SUDU Sgm 15 25 20.2 0.36 0.085 7.1 32 7.2 SEV 60 264 e gg 15 25 11.8 **	SUDU	56	52	+iPg	15	25	11.2								
SUDU Sgm 15 25 20.2 0.41 0.009 SUDU Sgm 15 25 20.2 0.36 0.085 7.1 32 7.2 SEV 60 264 ePg 15 25 12.0 0.33 0.004 5.2 1.0 0.006 6.3 29 7.5 SEV 8gm 15 25 19.9 0.22 0.006 6.3 29 7.5 SEV 8gm 15 25 19.9 0.22 0.006 6.3 29 7.5 ALU 15 347 -iPg 15 36 39.4 15 36 39.4 15 4.5° N. A=34.44°E, h=10κM, K _{II} =5.6±0.4(3), KD=6.1(3) ALU ALU 8gm 15 36 39.4 15 36 41.7 15 4.44°E, h=10κM, K _{II} =5.6±0.4(3), KD=6.1(3) ALU ALU 8gm 15 36 41.7 15 5.7 15 5.7 15	SUDU			Pgm	15	25	11.6	0.12			0.013				
SUDU	SUDU			eSg	15	25	18.8								
SEV 60 264 ePg 15 25 12.0 0.03 0.004 SEV Pgm 15 25 12.0 0.33 0.004 SEV eSg 15 25 19.9 0.22 0.006 3 29 7.5 Nº 2.1 января. Черное море, район 3 0=15 ч 36 мын 36.7с, φ=44.55 °N, λ=34.44 °E, h=10 км, K _Π =5.6±0.4(3), KD=6.1(3) ALU 15 347 -iPg 15 36 39.4 4 30.22 0.052 ALU Pgm 15 36 39.5 0.22 0.052 ALU Pgm 15 36 41.7 36 41.9 0.22 0.051 ALU Sgm 15 36 41.9 0.22 0.051 ALU Sgm 15 36 41.9 0.22 0.051 ALU Sgm 15 36 41.9 0.22 0.079 5.3 15 5.7 SIM 51 329 e(Sg) 15 36 50.9 41.9 0.27 0.079 5.3 15 5.7 5.7 SIM 53 6 41.9 0.22 0.001 5.3 15 5.7 5.7 SIM 53 6 50.9 5.0 0.009 5.3 15 6.3 5.7 SUDU	SUDU			Sgm	15	25	20.2	0.41	0.009						
SEV Pgm 15 25 12.0 0.33 0.004 SEV Sgm 15 25 19.8 19.8 19.9 0.22 0.006 19.8 19.9 0.22 0.006 6.3 29 7.5 SEV No.25 moles 19.9 0.22 0.006 6.3 29 7.5 No.25 moles 19.9 0.20 0.006 6.3 29 7.5 No.25 moles 19.0 0.006 6.3 29 7.5 No.25 moles 19.0 0.006 6.4 4.6 4.6 9.2 1.0 0.005 1.6 4.6 4.6 9.2 1.0 0.0 1.5 5.7 1.5 5.7 1.6 4.1 9.0 0.0 0.0 1.5 5.7 1.5 5.7 1.5 5.7 1.5 5.7 1.5 5.7 1.5 5.7 1.5	SUDU			Sgm	15	25	20.2	0.36		0.085		7.1	32	7.2	
SEV	SEV	60	264	ePg	15	25	11.8								
SEV Sgm 15 25 19.9 0.22 0.006 SEV Sgm 15 25 19.9 0.20 0.006 6.3 29 7.5 ***N**2.1 shbaps.** Uephoe mope, pañoh 3 ***O=15 γ 36 μ μ 36.7 c, φ=44.55 γ, λ=34.44 °E, h=10 κμ, K _Π =5.6±0.4(3), KD=6.1(3) ***ALU 15 347 -iPg 15 36 39.4 ***ALU Pgm 15 36 39.4 ***ALU Sgm 15 36 41.7 ***ALU Sgm 15 36 41.9 ***SuDDU 58 48 ePg 15 36 45.9 ***SUDU Sgm 15 36 45.9 ***SUDU Sgm 15 36 53.4 ***SUDU Sgm 15 36 54.5 ***SuDU Sgm 1	SEV			Pgm	15	25	12.0	0.33			0.004				
SEV Sgm 15 25 19.9 0.20 0.006 6.3 29 7.5 No 2.1 shbaps. Vephoe mope, pañoh 3 O=15	SEV			eSg	15	25	19.8								
No 2.1 shbaps. No 2.1	SEV			Sgm	15	25	19.9	0.22	0.006						
O=15 u 36 \(36 \) \(\) \(15 \) \(347 \) \(-iPg \) 15 \(36 \) \(39.5 \) \(0.22 \) \(0.052 \) \(\) \(ALU \) \(\) \\(\) \(\)	SEV			Sgm	15	25	19.9	0.20		0.006		6.3	29	7.5	
ALU 15 347 -iPg 15 36 39.4 ALU						Ŋoౖ	2. 1 я	нваря	. Черно	е море	, райо	н 3			
ALU		0 = 1	5ч 3	бмин 36	5.7c,	φ=	44.55	°N, λ=	34.44°E	$E_{h} = 10$	км, K_{Π}	=5.6	$\pm 0.4(3)$), KD	=6.1(3)
ALU	ALU	15	347	-iPg	15	36	39.4								
ALU Sgm 15 36 41.9 0.22 0.051 ALU Sgm 15 36 41.9 0.27 0.079 5.3 15 5.7 SIM 51 329 e(Sg) 15 36 50.9 SUDU 58 48 ePg 15 36 45.7 SUDU Pgm 15 36 45.9 0.15 0.003 SUDU eSg 15 36 53.4 SUDU Sgm 15 36 54.5 0.42 0.004 SUDU Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV 60 268 ePg 15 36 46.0 SEV Pgm 15 36 46.4 0.27 0.001 SEV eSg 15 36 54.0 SEV eSg 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 ALU 9 355 -iPg 21 8 5.1 ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	ALU			Pgm	15	36	39.5	0.22			0.052				
ALU Sgm 15 36 41.9 0.27 0.079 5.3 15 5.7 SIM 51 329 e(Sg) 15 36 50.9 SUDU 58 48 ePg 15 36 45.7 SUDU Pgm 15 36 45.9 0.15 0.003 SUDU eSg 15 36 53.4 SUDU Sgm 15 36 54.5 0.42 0.004 SUDU Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV 60 268 ePg 15 36 46.0 SEV Pgm 15 36 46.4 0.27 0.001 SEV Sgm 15 36 54.5 0.45 0.004 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 **Me3.1 января. Черное море, район 3** **O=214 8мин 1.4c, φ=44.60°N, λ=34.41°E, h=13κм, K _Π =5.8±0.1(2), KD=5.7(1) ALU 9 355 -iPg 21 8 5.1 ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	ALU			eSg	15	36	41.7								
SIM 51 329 e(Sg) 15 36 50.9 SUDU 58 48 ePg 15 36 45.7 45.7 50.003 SUDU Pgm 15 36 45.9 0.15 0.003 SUDU eSg 15 36 54.5 0.42 0.004 SUDU Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV Pgm 15 36 46.0 0.27 0.001 5.3 5.3 SEV Sgm 15 36 54.5 0.45 0.004 5.3 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 Nº 3.1 января. Черное море, район 3 0=21ч 8мин 1.4с, ф=4.60°N, λ=34.41°E, h=13κм, K _Π =5.8±0.1(2), KD=5.7(1) ALU Pgm 21 8 5.3 0.141 0.102 ALU	ALU			Sgm	15	36	41.9	0.22	0.051						
SUDU 58 48 ePg 15 36 45.7 SUDU eSg 15 36 53.4 SUDU Sgm 15 36 54.5 0.42 0.004 SUDU Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV 60 268 ePg 15 36 46.0 SEV Pgm 15 36 46.4 0.27 0.001 SEV eSg 15 36 54.0 SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALU			Sgm	15	36	41.9	0.27		0.079		5.3	15	5.7	
SUDU Pgm 15 36 45.9 0.15 0.003 SUDU eSg 15 36 53.4 SUDU Sgm 15 36 54.5 0.42 0.004 SUDU Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV 60 268 ePg 15 36 46.0 SEV Pgm 15 36 46.4 0.27 0.001 SEV eSg 15 36 54.0 SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4	SIM	51	329	e(Sg)	15	36	50.9								
SUDU	SUDU	58	48	ePg	15	36	45.7								
SUDU Sgm 15 36 54.5 0.42 0.004 SUDU Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV 60 268 ePg 15 36 46.0 SEV Pgm 15 36 46.4 0.27 0.001 SEV eSg 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 N_2 3. 1 shbaps. Vephoe mope, paйoh 3 $0=214$ 8 m uh $1.4c$, $\phi=44.60$ ° N , $\lambda=34.41$ ° E , $h=13$ E M, $K_{\Pi}=5.8\pm0.1(2)$, E MD ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	SUDU			Pgm	15	36	45.9	0.15			0.003				
SUDU Sgm 15 36 54.5 0.39 0.026 6.1 21 6.3 SEV 60 268 ePg 15 36 46.0 SEV Pgm 15 36 46.4 0.27 0.001 SEV eSg 15 36 54.0 SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4	SUDU			eSg	15	36	53.4								
SEV 60 268 ePg 15 36 46.0 SEV Pgm 15 36 46.4 0.27 0.001 SEV eSg 15 36 54.0 SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4	SUDU			Sgm	15	36	54.5	0.42	0.004						
SEV Pgm 15 36 46.4 0.27 0.001 SEV eSg 15 36 54.0 SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 **No 3.1 января. Черное море, район 3** 0=214 8мин 1.4c, φ =44.60°N, λ =34.41°E, h =13км, K_{Π} =5.8±0.1(2), KD =5.7(1) ALU 9 355 -iPg 21 8 5.1 ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	SUDU			Sgm	15	36	54.5	0.39		0.026		6.1	21	6.3	
SEV Sgm 15 36 54.0 SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4	SEV	60	268	ePg	15	36	46.0								
SEV Sgm 15 36 54.5 0.45 0.004 5.3 SEV Sgm 15 36 54.5 0.33 0.002 17 6.4	SEV			Pgm	15	36	46.4	0.27			0.001				
SEV Sgm 15 36 54.5 0.33 0.002 17 6.4 $N \ge 3.1$ января. Черное море, район 3 $0=21$ 4 8мин 1.4c, $\varphi=44.60$ °N, $\lambda=34.41$ °E, $h=13$ км, $K_{\Pi}=5.8\pm0.1(2)$, $KD=5.7(1)$ ALU 9 355 -iPg 21 8 5.1 ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	SEV			eSg	15	36	54.0								
No. 3. 1 января. Черное море, район 3 $0=214\ 8muh\ 1.4c,\ \phi=44.60°N,\ \lambda=34.41°E,\ h=13км,\ K_{\Pi}=5.8\pm0.1(2),\ KD=5.7(1)$ ALU 9 355 -iPg 21 8 5.1 ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	SEV			Sgm	15	36	54.5	0.45	0.004			5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SEV			Sgm	15	36	54.5	0.33		0.002			17	6.4	
ALU 9 355 -iPg 21 8 5.1 ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7						J	№ 3.1	января	н. Черно	е море,	район	3			
ALU Pgm 21 8 5.3 0.16 0.102 ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7			0 = 2	1ч 8мин	1.40	<i>c</i> , φ:	=44.60	°N, λ=.	34.41°E,	h=13км	$K_{\Pi}=5.$	8±0.1	! (2), KI	D = 5.7	(1)
ALU eSg 21 8 7.4 ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	ALU	9	355	-iPg	21	8	5.1								
ALU Sgm 21 8 7.6 0.31 0.141 5.7 15 5.7	ALU			Pgm	21	8	5.3	0.16			0.102				
-	ALU			eSg	21	8	7.4								
ATTI	ALU			Sgm	21	8	7.6	0.31	0.141			5.7	15	5.7	
ALU Sgm 21 8 7.6 0.36 0.084	ALU			Sgm	21	8	7.6	0.36		0.084					
SIM 45 328 eSg 21 8 16.6	SIM	45	328			8	16.6								
SUDU 56 53 ePg 21 8 11.3	SUDU	56	53			8	11.3								
SUDU eSg 21 8 18.7	SUDU			eSg	21	8	18.7								
SEV 58 263 eSg 21 8 19.6	SEV	58	263	eSg	21	8	19.6								
SEV Sgm 21 8 20.1 0.25 0.003	SEV			Sgm	21	8	20.1	0.25	0.003						
SEV Sgm 21 8 20.1 0.17 0.003 5.9	SEV			Sgm	21	8	20.1	0.17		0.003		5.9			
№ 4. 2 января. Черное море, район 3						№	4. 2 я	нваря	. Черно	е море	, райо	н 3			

											П	родо	лжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0:	=3y	26мин 1	3.5	<i>c</i> , ¢	=44.	60°N, λ	=34.41	$^{\prime}\circ E$, $h=1$	3км, <i>К</i>	$\Pi = 4$.	5(1),	KD=5	7.0(1)
ALU		355	-iPg			16.8			ŕ	ŕ		() .		()
ALU			Pgm			16.9	0.13			0.024				
ALU			eSg			19.1				****				
ALU			Sgm			19.3	0.19	0.021			4.5			
ALU			Sgm			19.3	0.21	0.021	0.02		1.0	11	5	
SUDU	56	53	e(Sg)			31.3	0.21		0.02			11	3	
БОРС	50	33	C(Dg)				pregr	Azorci	кое мор	e naй	он 7			
	0-	711 12	Q14111 () 3				_		, h=6км	_		1(6)	KD-1	10.0(3)
	0	/ 4 70	эмин 0.2						MD=3.				KD I	0.0(3)
ANN	152	157	-iPg			25.7		(-),		- (-),				
ANN	102	10,	Pgm			26.2	0.40			0.102				
ANN			i		48	39.8	00			0.102				
ANN			e			42.9								
ANN			Sgm			51.1	0.60		0.251		8.8			KERU**
FEO	155	217	e(Pg)			26.0	0.00		0.231		0.0			ILLICO
FEO	100	21,	eSg			44.6								
FEO			Sgm			44.8	0.42		0.206					
FEO			Sgm			48.6	0.24	0.161	0.200		9.5			MSH=3.4
SUDU	186	222	-ePn		48	29.9	0.21	0.101			7.5			141511 5.1
SUDU	100		Pnm		48	31.9	0.20			0.049				
SUDU			eSn		48	53	0.20			0.017				
SUDU			Snm		48	56.5	0.67		0.427		9.8			MSH=3.5
SUDU			Snm		48	56.5	0.69	0.201	0.427		7.0	139	10	MD=3.4
GL1R	212	146	-ePn		48	33.7	0.07	0.201				137	10	WID 3.4
GL1R	212	110	eSn		48	57.7								
SIM	233	236	eSn		49	1.9								
SIM	200	230	Snm		49	5.8	0.52	0.237			9.8			MSH=3.5
SIM			Snm		49	5.8	0.42	0.237	0.153		7.0			Mc=2.9
ALU	234	227	ePn		48	36.4	0.12		0.100					1,16 2.9
ALU	23.		Pnm		48	37.5	0.36			0.033				
ALU			eSn		49	3.5	0.50			0.055				
ALU			Snm		49	8.0	0.34	0.142						MSH=3.4
ALU			Snm		49	8.0	0.58	0.1 12	0.233		9.7	101	9.5	MD=3.1
YAL	263	227	eSn		49	9.7	0.50		0.233		7.1	101	7.5	WID 3.1
SEV		233	ePn			43.9								
SEV	207	233	Pnm			44.0	0.29			0.006				
SEV			eSn			16.3	0.27			0.000				
SEV			Snm			17.5	0.34	0.039			8.9			MSH=3
SEV			Snm			18.0	0.44	0.057	0.048		0.7	132	10.4	MD=3.3
DL V			Jiiii	,				Чепи	ое море	ากลูหัก	н 2	132	10.7	11112 3.3
			0=2u.53) м1			_	-	=34.48°			$K_{\Pi} = 6$	0(2)	
YAL	37	314				59.6	ψ 77.2	J 14, 76	J7.70 I	<i>⊒, 11</i> 1.	, n.vi, 1	. . 11	.0(2)	
ALU		351	eSg		53	3.1								
ALU	70	551	Sgm		53	3.2	0.22	0.012						
ALU			Sgm		53	3.4	0.22	0.012	0.011		6			
SUDU	82	28	_			12.3	0.17		0.011		0			
3000	04	20	csg		55	12.3								

										П	оодо.	лже	ние т	габлиі	цы 5.
1	2 3	4	5	6	7	8	9	10	11	12	13	14	Ī	15	
SUDU	•	Sgm	2		13.3	0.34	0.002								
SUDU		Sgm			13.3	0.21		0.007		6					
				Ŋoౖ	7. 9 s	інваря	. Черн	ое моро	е, рай	он 5					
								$K_{\Pi}=\hat{6}.9$							
ANN	63	ePg	19	37	45.2				,						
ANN					45.7	0.20			0.007	,					
ANN		_			53.8										
ANN		·			54.7	0.20	0.05								
ANN		_			54.7	0.30		0.035		7					
SUDU	122	_			11.0										
SUDU		_			11.8	0.28	0.008								
SUDU		_			11.8	0.22		0.008		6.8					
		8					январ	я. Райо	н 3						
ALU		eSg	4	6	50.3	00 _ 0	P								
ALU		_			51.8	0.41	0.018								
ALU		Sgm			51.8	0.39	0.010	0.013							
SUDU		eSg			56.2										
SUDU		Sgm			56.4	0.30	0.002								
SUDU		Sgm			56.4	0.56	*****	0.01							
5020		~5	·				я. Чепн	ое мор	e. naй	он 5					
	0=17u 5	4мин 18	8 6c			_	_	_	_		-0.5/3	2) K	D=7	8(1)	
ANN	41 (26.2	7 11, 70	37.32 1	2, 11 13	<i>icn</i> , 11 ₁	1 7.0-	-0.5(5	, 11	υ ,.	0(1)	
ANN		_			26.3	0.30			0.082	,					
ANN		_			31.4	0.50			0.002	•					
ANN		_			32.0	0.60	1.077	0.822		8.4					
SUDU	188 284	_			48.0	0.00	1.077	0.022		0.1					
SUDU	100 20				49.8	0.27			0.003						
SUDU		eSn			9.8	0.27			0.005						
SUDU					11.0	0.50		0.011		7.2					
SUDU					11.6	0.37	0.006	0.011		7.2	45	7.8	₹		
SEV	289 272				31.7	0.57	0.000				15	7.0	,		
SEV	207 212				34.3	0.28	0.002	0.004		7.2					
SE (omn	1,					о.оо. Срым, ј	эйон						
	0 = 1y 5	3мин 31.	9c				-	-			0 2(4) <i>KI</i>	0=5	2(2)	
ALU	12 153			•	36.1	-1, /	- 1.5 1 L	., 201	, 11]	J. / _	~·~(r)	,, 111	- 0.2	- (-)	
ALU	12 130	_			36.3										
ALU		_			36.4	0.25			0.012	!					
ALU					39.0	0.23			0.012	•					
ALU					40.3	0.39	0.091			5.5					
ALU		_			40.3	0.21	0.071	0.044		5.5	12	5.2)		
SIM	26 319	_			38.0	0.21		0.011			12	٥.2	-		
SIM	20 317	_			42.1										
SIM		_			42.6	0.35	0.02								
SIM		Sgm			42.6	0.40	0.02	0.025		5.3	11	5.2	,		
SUDU	54 76	_				0.70		0.023		5.5	11	٥.2	-		
SUDU	JT /(Sgm			52.7	0.56	0.005								
SUDU					52.7	0.34	0.003	0.007		5.1					
5000		Sgill	1	55	54.1	U.JT		0.007		J.1					
							25								

SeV												П	родо.	лже	ние таблицы 3
SeV Sgm 1 53 51.6 0.25 0.002 5.6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Series Series 1	SEV	58	245	eSg	1	53	50.8								
Sudding Su	SEV			Sgm	1	53	51.1	0.33	0.004						
Sudd	SEV			Sgm	1	53	51.6	0.25		0.002		5.6			
SUDU 31 358 -iPg 0 27 40.2 S S 0 27 40.2 S 0 0.003 S S S 0 27 44.5 S S S 0 27 44.5 S S S 0 27 44.5 S S 0 27 44.5 S D 0 27 49.4 S 0 27 50.0 0.22 0.007 4.6 16 5.8 ALU 49 280 eSg 0 27 50.0 0.23 0.007 4.6 16 5.8 ALU 49 280 eSg 0 27 50.0 0.23 0.007 4.6 16 5.8 ALU 5gm 0 27 50.0 0.23 0.007 4.6 16 5.8 ANN 5gm 23 25 16.3 0.30 0.91 0.768 8.9						№ 1	1. 9 d	реврал	ія. Чері	ное мој	ре, рай	он 4			
SUDU Pgm 0 27 40.2 0.27 40.5 SUDU Sgm 0 27 44.5 0.003			$\theta =$	€0ч 27м	ин	33.9	<i>c</i> , φ=	-44.61°	$N, \lambda = 3.$	5.01°E,	$h=20\kappa$	и, K_{Γ}	$_{\rm I}=4.9$	±0.20	(2)
SUDU	SUDU	31	358	-iPg	0	27	40.1								
SUDU Sudu Sem	SUDU			Pgm	0	27	40.2	0.27			0.003				
SUDU Sgm 0 2 45.8 0.22 0.007 4.6 16 5.8 ALU 49 280 eSg 0 27 49.4 <t< td=""><td>SUDU</td><td></td><td></td><td>eS</td><td>0</td><td>27</td><td>44.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SUDU			eS	0	27	44.5								
ALU ALU ALU Sgm 0 27 50.0 0.23 0.007 ALU ALU Sgm 0 27 50.0 0.23 0.007 ANN 53 65 iPg 22 52 10.0 ANN Pgm 22 52 10.0 ANN Sgm 22 52 10.0 ANN Sgm 22 52 10.0 ANN Sgm 22 52 10.3 ANN Pgm 22 52 17.1 0.30 0.91 0.768 8.9 KERU Pgm 22 52 17.1 0.30 0.91 0.768 8.9 KERU Pgm 22 52 17.1 0.30 0.91 0.768 KERU Pgm 22 52 17.1 0.01 KERU Pgm 22 52 17.1 0.001 KERU Pgm 22 52 27.1 0.17 0.01 KERU Pgm 22 52 2.19 FEO 110 290 ePg 22 52 19.0 FEO Sgm 22 52 24.9 SUDU Smm 22 52 24.9 SUDU Pmm 22 52 25.4 0.20 0.006 SUDU ALU Pmm 22 52 25.4 0.20 0.006 SUDU Smm 22 52 53.1 0.10 ALU Pmm 22 52 31.1 0.16 0.006 ALU Pmm 22 52 31.1 0.16 0.006 ALU ALU ALU ALU ALU ALU ALU AL	SUDU			Sgm	0	27	44.9	0.41	0.003						
ALU Sgm 0 27 50.0 0.23 0.007 ALU Sgm 0 27 50.0 0.38 0.001 5.1 **No 12 17	SUDU			_				0.22		0.007		4.6	16	5.8	3
National Content of the content o	ALU	49	280	eSg	0	27	49.4								
Note 1				_					0.007						
O=224 52μμ 0.7c, φ=44.68°N, λ=36.70°E, h=4κμ, K _{II} =8.6±0.5(6), KD=8.8(6)	ALU			Sgm											
ANN									_						
ANN		$\theta = 0$		52мин <i>0</i>	$0.7c_{1}$	φ=	44.68	3°N, λ=	=36.70°I	$E, h=4\kappa$	M , K_{Π} =	8.6±	0.5(6)	, KD	9 =8.8(6)
ANN		53	65	_											
ANN Sgm 22 25 17.1 0.30 0.91 0.768 8.9 KERU Pgm 22 52 17.1 0.01 0.01 0.01 KERU eSg 22 52 27.1 0.01 0.01 0.01 KERU eSg 22 52 27.1 0.01 0.01 0.01 KERU eLg 22 52 27.1 0.01 0.01 0.01 KERU eLg 22 52 27.1 0.01 0.01 0.01 KERU elg 22 52 27.1 0.01 0.01 0.01 0.01 GLIR 109 97 ePg 22 52 19.0 0.024								0.20			0.069				
KERU 72 345 -iPg 22 52 17.1 7.2 8.2 7.2 7.2 7.2 8.2 7.2 7.2 7.2 8.2 7.2 8.2 7.2 8.2 7.2				_											
KERU Pgm 22 52 17.2 0.17 0.01 KERU eSg 22 52 27.1 KERU eLg 22 52 27.1 KERU eLg 22 52 29.1 GLIR 109 97 ePg 22 52 19.0 FEO 110 290 ePg 22 52 21.9 FEO Pgm 22 52 22.6 0.23 0.024 FEO Sgm 22 52 24.8 0.004 8.4 40 8.5 SUDU 137 280 -ePn 22 52 24.9 0.20 0.006 8.4 40 8.5 SUDU Pnm 22 52 24.9 0.20 0.006 0.006 8.8 SUDU Snm 22 52 42.7 0.50 0.019 0.047 7.8 70 8.8 ALU 182								0.30	0.91	0.768		8.9			
KERU eSg 22 52 27.1 KERU eLg 22 52 29.1 GL1R 109 97 ePg 22 52 19.0 FEO 110 290 ePg 22 52 21.9 FEO Pgm 22 52 22.6 0.23 0.024 57 FEO Sgm 22 52 22.6 0.23 0.037 8.4 40 8.5 SUDU 137 280 -ePn 22 52 24.9 0.006 5006 <t< td=""><td></td><td>72</td><td>345</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		72	345	_											
KERU eLg 22 52 52 29.1 GL1R 109 97 ePg 22 52 19.0 ePg 22 52 19.0 FEO 110 290 ePg 22 52 21.9 ePg 22 52 21.9 FEO 2 eSg 22 52 34.8 eSg 22 52 34.8 FEO 3 eSg 22 52 34.8 Sgm 22 52 34.8 FEO 4 eSg 22 52 34.8 Sgm 22 52 34.8 FEO 5 eSg 22 52 34.8 Sgm 22 52 34.8 FEO 6 eSg 22 52 34.8 Sgm 22 52 34.8 SUDU 7 ePm 22 52 24.9 Sgm 22 52 44.9 SUDU 8 ePm 22 52 24.9 Submar 22 52 44.9 SUDU 9 ePm 22 52 24.9 Submar 22 52 44.9 SUDU 1 ePm 22 52 31.1 O.006 ALU 1 ePm 22 52 31.1 O.16 ALU 1 eSm 22 52 52 52.4 O.006 ALU 1 eSm 22 52 52 52.4 O.006 ALU 2 eSm 22 52 52.5 Submar 22 52 52.4 ALU 3 eSm 22 52 52.7 O.25 ALU 4 eSm 22 52 52.7 O.25 ALU 5 eSm 22 52 52.7 O.25 ALU 6 eSm 22 52 52.7 O.25 ALU 7 eSm 22 52 52.3 Submar 22 52 52.9 ALU 8 eSm 22 52 52.7 O.025 ALU 9 eSm 22 52 52.7 O.036 SIM 9 eSm 22 52 52.5 O.006				_				0.17			0.01				
GL1R 109 97 ePg 22 52 19.0 FEO 110 290 ePg 22 52 21.9 FEO 110 290 ePg 22 52 21.9 FEO eSg 22 52 34.8 0.024 FEO Sgm 22 52 34.8 FEO Sgm 22 52 36.3 0.33 0.037 8.4 40 8.5 SUDU 137 280 -ePn 22 52 24.9 0.20 0.006 5.5 5.0 5.0 0.006 5.5 5.0 5.0 0.006 5.0 0.006 5.0 0.006 5.0 0.006 5.0 0.006 5.0 0.006 5.0 0.006 5.0 0.006 5.0 0.006 5.0 5.0 0.006 5.0 5.0 8.8 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0				_											
FEO 110 290 ePg 22 52 21.9 FEO Pgm 22 52 22.6 0.23 0.024 FEO eSg 22 52 34.8 0.037 8.4 40 8.5 SUDU 137 280 -ePn 22 52 24.9 0.006 <td< td=""><td></td><td>400</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		400		_											
FEO Pgm 22 52 22.6 0.23 0.024 FEO eSg 22 52 34.8 0.037 8.4 40 8.5 SUDU 137 280 -ePn 22 52 24.9 0.20 0.006 8.4 40 8.5 SUDU Pnm 22 52 24.9 0.20 0.006 0.00				_											
FEO		110	290	_				0.22			0.024				
FEO Sgm 22 52 36.3 0.33 0.13 0.037 8.4 40 8.5 SUDU 137 280 -ePn 22 52 24.9 0.006								0.23			0.024				
SUDU 137 280 -ePn 22 52 24.9 SUDU Pnm 22 52 25.4 0.20 0.006 SUDU iSn 22 52 41.9 SUDU Snm 22 52 42.7 0.50 0.019 0.047 7.8 70 8.8 ALU 182 271 +e(Pn) 22 52 30.7 30.006				_				0.22	0.12	0.027		0.4	40	0.5	
SUDU Pnm 22 52 25.4 0.20 0.006 SUDU iSn 22 52 41.9 SUDU Snm 22 52 42.7 0.50 0.019 0.047 7.8 70 8.8 ALU 182 271 +e(Pn) 22 52 30.7 0.019 0.047 7.8 70 8.8 ALU Pnm 22 52 30.7 0.019 0.006		127	200	_				0.33	0.13	0.037		8.4	40	8.3)
SUDU iSn 22 52 41.9 SUDU Snm 22 52 42.7 0.50 0.019 0.047 7.8 70 8.8 ALU 182 271 +e(Pn) 22 52 30.7 30.7 30.006 30.0		137	200					0.20			0.006				
SUDU Snm 22 52 42.7 0.50 0.019 0.047 7.8 70 8.8 ALU 182 271 +e(Pn) 22 52 30.7 0.019 0.047 7.8 70 8.8 ALU Pnm 22 52 31.1 0.16 0.006								0.20			0.000				
ALU 182 271 +e(Pn) 22 52 30.7 ALU Pnm 22 52 31.1 0.16 0.006 ALU e 22 52 51.3 ALU eSn 22 52 52.4 ALU Snm 22 52 52.7 0.25 0.02 ALU Snm 22 52 55.9 0.19 0.028 ALU Snm 22 52 33.0 YAL 203 265 ePn 22 52 33.0 YAL eSn 22 52 57.0 50 8.5 SIM 206 279 -iPn 22 52 33.5 SIM Pnm 22 52 33.5 0.20 0.037 SIM Snm 22 52 57.4 SIM Snm 22 52 59.1 0.20 0.038 0.055 9.5 70 8.7 SEV 240 267 -ePn 22 52 38.0 0.25 0.002								0.50	0.010	0.047		7 8	70	8 8	2
ALU		182	271					0.50	0.017	0.047		7.0	70	0.0	,
ALU		102	2/1					0.16			0.006				
ALU								0.10			0.000				
ALU															
ALU Snm 22 52 55.9 0.19 0.028 8.6 70 8.8 YAL 203 265 ePn 22 52 33.0 YAL eSn 22 52 57.0 50 8.5 SIM 206 279 -iPn 22 52 33.2 SIM eSn 22 52 57.4 SIM Snm 22 52 57.4 SIM Snm 22 52 59.1 0.20 0.038 0.055 9.5 70 8.7 SEV 240 267 -ePn 22 52 38.0 0.25 0.002								0.25		0.02					
YAL 203 265 ePn 22 52 33.0 YAL eSn 22 52 57.0 50 8.5 SIM 206 279 -iPn 22 52 33.2 50 0.037 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.02</td> <td></td> <td>8.6</td> <td>70</td> <td>8.8</td> <td>3</td>										0.02		8.6	70	8.8	3
YAL eSn 22 52 57.0 50 8.5 SIM 206 279 -iPn 22 52 33.2 SIM Pnm 22 52 33.5 0.20 0.037 SIM eSn 22 52 57.4 0.20 0.038 0.055 9.5 70 8.7 SIM Snm 22 52 59.1 0.20 0.038 0.055 9.5 70 8.7 SEV 240 267 -ePn 22 52 37.7 0.002 0.002		203	265					0.15	0.020			0.0	, 0	0.0	
SIM 206 279 -iPn 22 52 33.2 SIM Pnm 22 52 33.5 0.20 0.037 SIM eSn 22 52 57.4 SIM Snm 22 52 59.1 0.20 0.038 0.055 9.5 70 8.7 SEV 240 267 -ePn 22 52 37.7 0.002 0.002													50	8.5	5
SIM Pnm 22 52 33.5 0.20 0.037 SIM eSn 22 52 57.4 0.20 0.038 0.055 9.5 70 8.7 SEV 240 267 -ePn 22 52 37.7 0.25 0.002 SEV Pnm 22 52 38.0 0.25 0.002		206	279												
SIM eSn 22 52 57.4 SIM Snm 22 52 59.1 0.20 0.038 0.055 9.5 70 8.7 SEV 240 267 -ePn 22 52 37.7 SEV Pnm 22 52 38.0 0.25 0.002								0.20			0.037				
SIM Snm 22 52 59.1 0.20 0.038 0.055 9.5 70 8.7 SEV 240 267 -ePn 22 52 37.7 SEV Pnm 22 52 38.0 0.25 0.002															
SEV 240 267 -ePn 22 52 37.7 SEV Pnm 22 52 38.0 0.25 0.002								0.20	0.038	0.055		9.5	70	8.7	7
SEV Pnm 22 52 38.0 0.25 0.002		240	267												
								0.25			0.002				

													Пр	одол	іжен	ие та	блиц	ы 5.
1	2	3	4	5	6	7	8	9		10	11		12	13	14		15	
SEV			Snm	22	53	7.0	0.32			0.013								
SEV			Snm	22	53	7.0	0.38	0.018	3				8.1	70	9.2			
				Ŋ	6 13	3. 18 d	ревра.	ля. Че	рн	юе мор	e, pa	ай	он 1					
	0 = 2	?3ч 53	3 мин 3	1.5c	, φ=	=44.33	3°N, λ:	=33.09	°E	E , $h=7\kappa$	м, К₁	_T =	7.1±	0.2(4)	, KD	=7.66	4)	
SEV	52	63	ePg	23	53	40.9												
SEV			Pgm	23	53	42.1	0.18				0.002	2						
SEV			iSg	23	53	47.9												
SEV			Sgm	23	53	48.3	0.34	0.032	2									
SEV			Sgm	23	53	48.4	0.28			0.026			6.7					
YAL	86	78	e(Pg)	23	53	45.9								42	8.2			
YAL			eSg	23	53	55.6												
SIM	106	50	e(Pg)	23	53	49.1								27	7.3			
SIM			eSg	23	54	1.5												
SIM			Sgm	23	54	1.7	0.30	0.013	3									
SIM			Sgm	23	54	2.1	0.30			0.016			7.4	28	7			
ALU	111	69	e	23	54	1.0												
ALU			e(Sg)	23	54	5.1												
ALU			Sgm	23	54	5.2	0.19	0.016	6				7					
TARU	123	339	_			52.4												
TARU			eSg			7.5												
SUDU	163	67				58.4												
SUDU						59.0												
SUDU						18.3												
SUDU						20.3	0.23			0.01			7.2					
SUDU			Snm			20.4	0.31	0.004						46	7.9			
	0 1									юе мор				0.5/4	\		/ 1 \	
							$^{\circ}N, \lambda =$	=34.39°	ĽE,	h=27k	:м, К	Π=	=6.5±	0.5(4), KL)=6.4((1)	
YAL	21	116	-ePg			2.7												
YAL	•	_	eSg			6.9												
ALU	30	3	iSg			9.1	0.01			0.025								
ALU			Sgm			9.1	0.21	0.001		0.027								
ALU	50	206	Sgm			9.2	0.28	0.091	l				6.9					
SEV	38	286	-ePg			8.4												
SEV			_			16.3	0.25			0.017			(0					
SEV			_			17.2	0.25	0.010	`	0.017			6.9	22	<i>(</i> 1			
SEV	<i>C 1</i>	2/11	-			17.3	0.42	0.019	1					22	6.4			
SIM	04	341	eSg				0.45	0.03	,				66					
SIM						18.0	0.45	0.02	_	0.012			6.6					
SIM	72	12				18.6	0.45			0.012								
SUDU SUDU	72	43				19.8	0.42			0.009			5.5					
SUDU						20.9 21.7		0.003	2	0.009			5.5					
3000			ogin							юе мор	e ne	ай	он 2					
	0=2	111 20	MIII 16				_		_	тое мор , <i>h=23к</i>	_			-0 111) KI	0=7.54	(3)	
YAL		14 39 299				52.1	1 v , ∧-	34.41	£,	n-23k	м, К	11-	-/.1±	·U.4(4 ₎	, ΛL	,-/.5(3)	
YAL	23	<i>499</i>	_			56.4												
ALU	32	0				53.5												
ALU	32	U	-11 g	∠ I	57	23.3												

											П	родо.	пжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ALU		•	Pgm	21	39	53.6	0.22		<u> </u>	0.014				
ALU			iSg	21	39	58.5								
ALU			Sgm	21	39	58.6	0.27	0.178			7.4			
ALU			Sgm	21	39	58.7	0.27		0.065			25	6.9	
SEV	61	288	-ePg	21	39	57.7								
SEV			eSg	21	40	5.8								
SEV			Sgm	21	40	6.5	0.24		0.0.31		7.5			
SEV			Sgm	21	40	6.7	0.24	0.019				32	7.9	
SIM	66	341	eSg	21	40	6.9								
SIM			Sgm	21	40	7.6	0.33		0.019					
SIM			Sgm	21	40	8.5	0.33	0.033			7.2			
SUDU	72	41	-ePg	21	39	59.4								
SUDU			Pgm	21	39	59.5	0.20			0.002				
SUDU			eSg	21	40	9.2								
SUDU			Sgm	21	40	9.6	0.35		0.015		6.2			
SUDU			Sgm	21	40	13.6	0.34	0.004				40	7.6	
TARU	184	308				17.2								
TARU			e(Sn)											
						-		-	ное мо					
	0 = 2	1ч 46.					°N, λ=	34.42°	E, $h = 18$	κ м, K_{Π}	=7.2	$\pm 0.5(4$!), KD	=7.4(2)
YAL	25	303	_			38.5								
YAL			_			42.7								
ALU	35	359	_			39.9								
ALU			_			40.1	0.30			0.011				
ALU			_			44.8								
ALU			_			44.9	0.21		0.07					
ALU			_			45.0	0.25	0.225			7.7			
SEV	62	290	_			44.0	0.40	-	+	-				
SEV						44.3	0.19			0.003				
SEV			_			52.1		0.010						
SEV			_			52.2	0.27	0.018	0.020		- 4	2.4	7 0	
SEV	60	2.41	_			52.8	0.23		0.029		7.4	34	7.3	
SIM	69	341	_			53.4	0.26	0.022						
SIM			_			54.8	0.36	0.023	0.022		7.2			
SIM	7.4	20	_			56.0	0.24		0.023		7.3			
SUDU	74	39	_			45.8	0.20			0.002				
SUDU			_			48.8	0.30			0.003				
SUDU						55.3	0.42		0.002					
SUDU			_			55.9	0.42	0.006	0.002		6.2	24	7.2	
SUDU	106	200	_			56.6	0.48	0.006			6.2	34	7.3	
TARU	190	309	e(Pn)			3.7								
TARU			csn			26.0 7- 22 d	henno	10 Uan	ное мо	ne naŭ	ion 1	,		
	0=2	211 12	M1111 1 Q										() <i>K</i> D	=8.1(3)
YAL		24 16. 302				54.0	1 v , ∧−	34.41	Ŀ, n−∠3	κм, К∏⁻	-0.0	±0.5(4	<i>)</i> , KD	-0.1(<i>3)</i>
	∠ 4	302												
YAL YAL						54.2 58.2								
1 AL			esg	22	10	JU.2								

											П	родол	тжен	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ALU	34	0	ePg	22	18	55.3	•	•	•					
ALU			_			55.6								
ALU			_			55.7	0.21			0.031				
ALU			iSg	22	19	0.5								
ALU			Sgm	22	19	0.7	0.21		0.14					
ALU			Sgm			0.8	0.28	0.475			8.4	45	7.8	
SEV	61	298	ePg	22	18	59.6								
SEV			-iPg	22	18	59.8								
SEV			Pgm	22	18	59.9	0.34			0.012				
SEV			iSg	22	19	7.9								
SEV			Sgm	22	19	8.0	0.25	0.049						
SEV			Sgm	22	19	8.6	0.27		0.093		8.3	55	8.3	
SIM	67	341	iSg	22	19	9.1								
SIM			Sgm	22	19	9.3	0.34		0.043					
SIM			Sgm			9.4	0.25	0.09			8.3			
SUDU	73	40	-ePg	22	19	1.5								
SUDU			Pgm	22	19	2.3	0.24			0.004				
SUDU			iSg	22	19	11.3								
SUDU Sgm 22 19 11.9 0.45 0.046 7 SUDU Sgm 22 19 12.3 0.52 0.016 50 8.														
SUDU			Sgm	22	19	12.3	0.52	0.016				50	8.1	
TARU 185 309 ePn 22 19 19.3														
TARU eSn 22 19 41.8														
								пя. Чер						
	0=1	ч 21.	мин 20.	.3c,	$\varphi =$	44.39	°N, λ=	34.41°E	h=22n	км, K_{Π}	$=7.5\pm$	0.5(4)	, <i>KD</i>	9=7.9(2)
YAL	23	299	-iPg			25.4								
YAL			iSg			29.6								
ALU	32	0	-iPg			26.8								
ALU			Pgm			27.0	0.25			0.019				
ALU			iSg			31.8								
ALU			Sgm			31.9	0.22		0.097					
ALU			Sgm			32.0	0.33	0.334			7.7			
SEV	61	288	-ePg			30.9								
SEV			Pgm			31.0	0.27			0.005				
SEV			eSg		21	39.1								
SEV			Sgm			39.9	0.27		0.054		7.9			
SEV			Sgm			40.1	0.25	0.028				47	8	
SIM	66	341				40.3								
SIM			-			40.5	0.30	0.046			7.7			
SIM			Sgm			40.5	0.25		0.028					
SUDU	72	41	+ePg			32.6				0.000				
SUDU Pgm 1 21 35.5 0.22 0.003														
SUDU eSg 1 21 42.5														
SUDU			Sgm			45.4	0.30	0.006	0.018		6.5			
SUDU		• • •	Sgm			45.8	0.28	0.006				42	7.7	
TARU	184	308	ePn			50.5								
TARU			eSn			12.8	.	II	****	ma	1			
				J	(2.1)	9. 28 (февра.	пя. Чер	ное мо	pe, pai	ион 2			

											П	родо.	лжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0 = 1.	3ч 29.	мин 48	.5c,	φ=	44.37	γ°N, λ=	34.42°E	h=20	км, K_{Π} =	= 7.7=	±0.3(4	t), KL	0=7.7(3)
YAL	25	303	-ePg	13	29	53.4								
YAL			eSg	13	29	57.7								
ALU	35	359	+ePg	13	29	55.2								
ALU			Pgm	13	29	55.4	0.22			0.016				
ALU			eSg	13	30	0.1								
ALU			Sgm	13	30	0.3	0.42	0.417						
ALU			Sgm	13	30	1.4	0.48		0.102		7.8	36	7.4	
SEV	62	290	-ePg	13	29	58.9								
SEV			Pgm	13	29	59.1	0.23			0.012				
SEV			eSg			7.1								
SEV			Sgm			7.4	0.45	0.082			7.8			
SEV			Sgm			8.0	0.23		0.038			43	7.8	
SIM	69	341	e(Sg)			6.8								
SIM			eSg			8.3								
SIM			Sgm			9.7	0.28	0.073			8.2			
SUDU	74	39	+ePg			0.6								
SUDU			Pgm			5.8								
SUDU			_			10.4								
SUDU						11.0	0.45	0.057			7.1			
SUDU			_			11.6	0.48		0.013			45	7.9	
TARU	186	309				18.5								
TARU						41.0						45	7.9	
							марта	. Черно	е море	, райоі	н 2			
	0 = 34	34м	ин 28.3	<i>c</i> , (_	_	_	-		0.2(2)), <i>K</i> D	=10.4(5)
								=3.5(5),						
YAL	25	327	+iPg			34.6	,							α=140°
YAL			-iPg	3	34	34.8								
YAL			eSg			39.4								<i>I</i> _{YAL, ALU} =2.5-3 б
ALU	43	8	+iPg			37.3								
ALU			Pgm			37.6	0.23			0.43				
ALU			eSg			43.4						137	10.1	MD=3.4*
SEV	59	299	-iPg		34	39.1		-	+	-				α=126°
SEV			Pgm			39.4	0.33			1.2				
SEV			eSg			47.3						165	10.7	MD=3.6*
SIM	75	347	-iPg			41.5		_	0	_				α=172°
SIM						42.4	0.42			0.385				
SIM						51.6								Mc=3.3
SIM			_			52.2	0.33	1.6						MSH=3.5
SIM			_			52.2	0.30		1.4		11	140	10	MD=3.4
SUDU	84	39	_					+	+	+				α=220°
SUDU			Pgm				0.52			0.723				
SUDU						54.3						165	10.5	MD=3.6*
FEO	116	47	-iPg											
FEO		-	_			49.0	0.30			0.89				
FEO			e(Sg)			3.8								
FEO			Sgm				0.33		0.849					MD=3.3
			_											

											П	одој	тжені	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
FEO		•	Sgm	3	35	5.2	0.39	2.4			11.4	129	10.8	MSH=4.2
TARU	185	311	ePn	3	34	58.5								
TARU			eSn	3	35	20.6								
ANN	245	74	ePn	3	35	4.8								
ANN			Pnm	3	35	5.4	0.30			0.037				
ANN			eSn	3	35	30.8								
ANN			Snm	3	35	31.5	0.30	0.155	0.087					
ANN			Snm	3	35	32.6	0.20	0.285			9			
BZK	261	186	ePn		35	6.3								
DIKM	304	166	ePn	3	35	12.7								
SOC	438	99	ePn	3		29.0								
							_	. Черно	_	-		_,		
							1=34.3	$4^{\circ}E, h=$	26км, 1	$K_{\Pi} = 8.5$	±0.4(.	5), KL	0=8.4	(5), $Mw=2.9$
YAL	30	328				32.5								
YAL	4.5	_	_			37.1								
ALU	47	5	_			35.0	0.20			0.017				
ALU						35.1	0.20			0.017				
ALU			_			41.1	0.27	0.416			0.5			
ALU			_			41.4	0.27	0.416	0.212		8.5	52	0.2	
ALU	(2	200	_			41.4	0.33		0.312			53	8.2	
SEV	62	300	_			36.8	0.25	-	+	0.022				
SEV			Pgm			37	0.25			0.032				
SEV			_			44.8	0.20	0.02						
SEV SEV			_			45.3 45.7	0.20 0.14	0.03	0.086		8.8	60	8.9	
SIM	70	345	_			39.8	0.14		0.080		0.0	00	0.9	
SIM	1)	373	_			49.3								
SIM			_			50.2	0.25	0.063						
SIM			_			50.2	0.20	0.003	0.142		9.2	52	8	
SUDU	87	35	_			40.8	0.20		0.1 12		7.2	32	O	
SUDU	0,		_			40.9	0.19			0.02				
SUDU			_			51.5	0.17			0.02				
SUDU			_			51.7	0.36	0.021						
SUDU			_			52.6	0.22		0.066		8	70	8.8	
FEO	118	43	_			46.2								
FEO			_			46.5	0.16			0.052				
FEO			_			1.2								
FEO			Sgm				0.24	0.029						
FEO			Sgm			1.8	0.25		0.028		8			
TARU	189	310	ePn	18	10	57.0								
TARU			eSn	18	11	19.7								
							_	. Черно	_	-				
	0=						°N, λ=.	33.69°E	$h=9\kappa$	и, $K_{\Pi}=$	7.3±0	.4(2),	KD=	7.5(1)
SEV	83	0	_			21.4								
SEV			Pgm			21.8	0.16			0.012				
SEV			eSg			31.2								
SEV			Sgm	6	57	31.8	0.33	0.021						

											П	родо.	лжени	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SEV		1	Sgm	6		31.8	0.36		0.025	u.	6.9	31	7.5	
YAL	85	26	ePg			22.3								
YAL			eSg			32.7								
SUDU	160	40	eSn		57	52.1								
SUDU			Snm		57	52.9	0.29	0.004						
SUDU			Snm		57	52.9	0.30		0.022		7.6			
TARU	198	333	e(Sn)		58	1.2								
			, ,		N_{2}	23.4	марта	. Черн	ое море	, райо	н 5			
		0=	9ч 26м	ин .	58.7	<i>c</i> , φ=	44.65°	N , $\lambda = 3$	6.87°E,	$h=20\kappa$	и, K_{Π}	=7.7=	±0.4(3))
ANN	43	54	ePg	9	27	7.4								
ANN			Pgm	9	27	7.5								
ANN			eSg	9	27	13.3								
ANN			Sgm	9	27	13.6	0.30	0.18	0.096		7.4			
SUDU	151	281	eSn	9	27	40.1								
SUDU			Snm	9	27	41.5	0.27	0.006						
SUDU			Snm	9	27	41.5	0.34		0.012		7.4			
YAL	216	266	e(Sn)	9	27	54.9								
SEV	253	268	eSn	9	27	2.5								
SEV			Snm	9	28	3.3	0.34	0.009						
SEV			Snm	9	28	3.3	0.31		0.005		8.2			
					No	24. 4	марта	. Черн	ое море	, райо	н 4			
	0 = 2.	2ч 46	бмин 35	.2c,	φ=	44.61	'°N, λ=	35.11°1	E, $h=20$	κ м, K_{Π}	=6.8=	±0.5(5), KD	=7.1(2)
SUDU	32	344	+ePg	22	46	42.1								
SUDU			Pgm	22	46	43.4	0.41			0.027				
SUDU			eSg	22	46	46.8								
SUDU			Sgm	22	46	47.2	0.28	0.009						
SUDU			Sgm	22	46	47.2	0.24		0.035		6	30	7.1	
FEO	50	26	Pgm				0.33			0.038				Sg-Pg=6.2 c
FEO			Sgm				0.31	0.049	0.025		6.6			**
ALU	56	278	ePg	22	46	47.8								
ALU			Pgm	22	46	48.1	0.22			0.012				
ALU			eSg	22	46	55.6								
ALU			Sgm	22	46	56.4	0.33	0.031						
ALU			Sgm	22	46	56.4	0.28		0.036		6.7	31	7.1	
YAL		260	_			59.2								
SIM	87	296	eSg			2.3								
SIM							0.35	0.03	0.043		8			
SEV	113	267	eSg											
SEV			_			10.8	0.36	0.007						
SEV			Sgm	22	47	10.8	0.17		0.004		6.9			
TARU	220	292	e(Sn)								_			
		_					-	а. Черн	_					
							3°N, λ=	<i>33.09°1</i>			=7.5=	±0.2(3), KD:	=7.9(2)
SEV	55	58	_			59.2		+	+	+				
SEV						59.3	0.20			0.012				
SEV			eSg			6.1								
SEV			Sgm	13	33	6.5	0.31	0.057			7.2			

											П	родол	іжен	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SEV			Sgm	13	33	6.5	0.28		0.036			40	8.1	
YAL	88	75	e(Sg)	13	33	15.8								
ALU	114	67	e(Sg)	13	33	24.0								
ALU			Sgm	13	33	26.1	0.19	0.025			7.5			
TARU	129	341	-iPg	13	33	11.3								
TARU			eSg	13	33	27.2								
SUDU	165	66	+iPn	13	33	17.7								
SUDU			Pnm	13	33	19.2	0.25			0.009				
SUDU			eSn	13	33	39.8								
SUDU			Snm	13	33	41.2	0.27		0.0.26		7.8			
SUDU			Snm	13	33	41.2	0.2.0	0.003				39	7.6	
								а. Черн						
							PN , $\lambda =$.	36.78°E	$h=26\mu$	км, K_{Π} =	=7.8±	0.4(5)	, KD	9 =7.8(4)
ANN	44	73	ePg			58.0								
ANN			Pgm			58.2	0.18			0.041				
ANN			eSg		12	4.1								
ANN			Sgm		12	4.5	0.28		0.065		8.1			
KERU	65	338	e(Pg)		12	3.4								
KERU			Pgm		12	3.8	0.19			0.003				
SUDU	141	276	ePn		12									
SUDU			Pnm		12		0.22			0.004				
SUDU			eSn			28.0								
SUDU			Snm			31.9	0.19		0.01		7.2			
SUDU			Snm			31.9	0.27	0.004				39	7.6	
ALU	188	268	ePn			15.9								
ALU			eSn			37.2								
ALU			e			38.0								
ALU	240	2 < 2	Snm			40.6	0.20	0.014	0.015		8.1			
YAL	210	262	ePn			19.3								
YAL	211	276	eSn			42.6								
SIM	211	276	ePn			19.5	0.25			0.02				
SIM			Pnm		12	19.9	0.35			0.02				
SIM			eSn		12		0.25	0.017	0.006		0.2	4.4	7.0	
SIM	246	265	Snm			43.5	0.25	0.017	0.006		8.3	44	7.8	
SEV	246	265	ePn			23.5	0.20			0.002				
SEV			Pnm			24.9	0.20			0.002				
SEV						50.4	0.22	0.004	0.002		7.2	40	0.1	
SEV			Snm				0.23		0.002		7.3	40	8.1	
	0-2	2., 12	22					а. Черн - 2 1 2 101				0 1/1	vi	7-0.4(6)
	v=2.	<i>эч</i> 13	мин эо	.UC,				34.34°1 , MD=3				±0.4(4 ₎), KL	0=9.4(6)
YAL	16	293	+ePg	23			(1)	,	(. /)	2.2				
YAL	- 3		_			40.6								
YAL						43.5						86	9.5	MD=3.0
ALU	28	10	_			41.9							5	
ALU						43.8	0.19			0.281				
ALU			iSg			46						95	9.3	MD=3.1*
			-~5									, ,	5	

											П	родо.	пжени	е таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SEV	54	284	-iPg	23	13	46.2								
SEV			Pgm	23	13	47.6	0.14			0.04				
SEV			iSg	23	13	53.5								
SEV			Sgm	23	13	54.8	0.20	0.556						MSH=3.0
SEV			Sgm	23	13	54.9	0.20		0.7		10.1	81	9.5	MD=2.9
SIM	60	343	+iPg	23	13	47.4								
SIM			Pgm	23	13	49.8	0.22			0.096				
SIM			iSg	23	13	55.3								
SIM			Sgm	23	13	55.9	0.21	0.463						MSH=3.0
SIM			Sgm	23	13	56.0	0.15		0.612		10.3	75	8.8	MD=2.9
SUDU	73	45	-iPg	23	13	49.5								
SUDU			Pgm	23	13	50.9	0.17			0.06				
SUDU			eSg	23	13	59.1								
SUDU			Sgm	23	14	0	0.30		0.581		9.6			MSH=3.1
SUDU			Sgm	23	14	0	0.22	0.069				100	9.5	MD=3.1
FEO	106	51	e(Pg)	23	13	55.8								
FEO			Pgm	23	13	58.5	0.16			0.063				
FEO			eSg	23	14	8.9								MSH=2.7
FEO			Sgm	23	14	10.9	0.20	0.125	0.144		9.3	76	9.8	MD=2.9
TARU	177	307	ePn	23	14	6.0								
TARU			eSn	23	14	27.7								
ANN	241	77	ePn	23	14	12.2								
ANN			eSn	23	14	40.0								
TLCR	444	283	+Pn	23	14	39.0								
TLCR			Sn	23	15	24.1								
SOC	440	100	e(Sn)	23	15	25.4								
								а. Черн						
							<i>44.38</i> °	$^{\circ}N$, $\lambda=3$	4.42°E,	$h=10\kappa$	M, K_{I}	=5.6=	<i>±0.5(2)</i>	
YAL	24	296	-iPg			7.9								
YAL			_			11.0								
ALU	33	358	e(Sg)											
ALU			_			14.4	0.27	0.017			5.1			
SEV	61	287	_			22.2					_			
SEV			Sgm			22.7	0.16	**	0.005		6.1			
		0	0. 1					а. Черн				5 ()	0.1/2)	
VAI	22						4.4U N	V , $\lambda = 34$.	40°E, K	ı=12κM	, ΛΠ=	−J.0±().1(2)	
YAL	22	296	+iPg											
YAL	21	Λ	iSg +ePg			17.2 15.9								
ALU	31	0	_				0.12			0.004				
ALU			Pgm eSg			17 20.2	0.13			0.004				
ALU			_			20.2	0.22	0.02			5 5			
ALU SEV	60	286	Sgm eSg			28.4	0.23	0.02			5.5			
SEV	00	200	esg Sgm			28.4	0.17		0.003					
SEV			Sgm			28.7	0.17	0.002	0.003		5.7			
SL V			ogiii						ne mon	e. naŭ				
№ 30. 18 марта. Черное море, район 2 0=0ч 7мин 24.6с, ф=44.36°N, λ =34.40°E, h =7км, K_{Π} =5.6±0.1(2)														
		J	0 . / 3/1		_ ,	-, ψ		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	о д,	/ N/N	, **11	2.0-0	(2)	

```
Продолжение таблицы 5.
                              7
                                                                  13 14
            3
                       5 6
                                                 10
                                                        11
                                                              12
                                                                                  15
YAL
         24 306
                           7
                  -ePg
                        0
                             29.7
                   eSg
YAL
                       0
                           7 32.7
ALU
        36
                 +ePg
                       0
                           7 30.3
                                                       0.004
ALU
                  Pgm 0
                           7 30.5
                                   0.14
                   eSg 0 7 35.1
ALU
                  Sgm 0 7 36.1
                                         0.018
                                                              5.6
ALU
                                   0.21
        61 290
SEV
                   eSg 0 7 43.4
SEV
                  Sgm 0 7 44.1
                                   0.16
                                                 0.002
SEV
                  Sgm 0 7 44.3 0.14
                                         0.002
                                                              5.5
                             № 31. 21 марта. Крым, район 2
         0=18ч 45мин 46.4с, \phi=44.45°N, \lambda=34.07°E, h=15км, K_{\Pi}=5.3(1), KD=5.9(1)
YAL
                 +ePg 18 45 50.0
                                                                               \alpha=215^{\circ}
YAL
                   iSg 18 45 52.5
SEV
         32 290
                  -ePg 18 45 52.1
                  Pgm 18 45 52.6
                                                       0.003
SEV
                                   0.11
SEV
                   eSg 18 45 56.2
                                                 0.005
SEV
                  Sgm 18 45 56.8
                                   0.13
                                                              5.3
                                                                   13 5.9
                             № 32. 21 марта. Крым, район 2
         0=19ч 26мин 6.1с, \phi=44.45°N, \lambda=34.07°E, h=15км, K_\Pi=5.4(1), KD=6.1(1)
                  +ePg 19 26 9.8
YAL
            60
                                                                               \alpha=184^{\circ}
YAL
                   eSg 19 26 12.3
SEV
         32 290
                  -ePg 19 26 11.8
SEV
                  Pgm 19 26 12.0
                                   0.14
                                                       0.004
SEV
                   eSg 19 26 16.0
SEV
                  Sgm 19 26 16.7 0.22
                                                 0.008
                                                              5.4
                                                                  15 6.1
                             № 33. 21 марта. Крым, район 2
         0=20ч 12мин 9.8с, \varphi=44.46°N, \lambda=34.06°E, h=15км, K_{\Pi}=4.8(1), KD=4.9(1)
                 +ePg 20 12 13.3
YAL
         8 59
                   iSg 20 12 15.8
YAL
                   ePg 20 12 15.4
SEV
         32 289
                  Pgm 20 12 15.4
SEV
                                    0.11
                                                       0.002
SEV
                   eSg 20 12 19.4
                                                 0.003
SEV
                  Sgm 20 12 20.3 0.13
                                                              4.8
                                                                   10 4.9
                             № 34. 22 марта. Крым, район 2
          0=19ч 44мин 3.2с, \phi=44.46°N, \lambda=34.06°E, h=15км, K_{\Pi}=5.7(1), KD=6.5(1)
YAL
         8 69
                 +ePg 19 44
                               6.8
YAL
                   eSg 19 44
                               9.3
SEV
         32 289
                  -ePg 19 44
                               8.8
                  Pgm 19 44
                                                       0.009
SEV
                               9.9
                                    0.11
                  eSg 19 44 12.8
SEV
                                           0.01
SEV
                  Sgm 19 44 13.1
                                   0.17
SEV
                  Sgm 19 44 13.4 0.22
                                                 0.014
                                                              5.7
                                                                  18 6.5
                             № 35. 22 марта. Крым, район 2
         0=19ч 48мин 30.7с, \phi=44.45°N, \lambda=34.07°E, h=15км, K_{\Pi}=5.7(1), KD=6.5(1)
YAL
         8 60 +ePg 19 48 34.4
```

						П	родо	лжени	е таблицы 5.		
1	2 3	4 5 6	7 8	9	10 1		13	14	15		
YAL		iSg 19 48	36.9								
SEV	32 290	-ePg 19 48		-	+ -						
SEV		Pgm 19 48			0.0	006					
SEV		iSg 19 48	40.6								
SEV		Sgm 19 48		0.009		5.7					
SEV		Sgm 19 48			0.009		18	6.5			
№ 36. 23 марта. Крым, район 2											
	0 = 114	39мин 38.5с,					5.1(1),	KD=7	.3(1)		
YAL	8 60	+ePg 11 39	42.1								
YAL		iSg 11 39	44.6								
SEV	32 290	-iPg 11 39	44.1		+ -				α=91°		
SEV		Pgm 11 39	44.4 0.12		0	.01					
SEV		iSg 11 39	48.2								
SEV		Sgm 11 39		0.012							
SEV		Sgm 11 39			0.016	6.1	27	7.3			
		-	37. 23 март	а. Черн	ое море, р	айон 5					
0 =16ч 14мин 44.4 c , φ =44.67° N , λ =36.64° E , h =13 κ м, K_{Π} =7.4 \pm 0.5(3)											
ANN	55 70	ePg 16 14	55.1								
ANN		Pgm 16 14	55.4 0.20		0.0	005					
ANN		eSg 16 15	2.4								
ANN		Sgm 16 15			0.07						
ANN		Sgm 16 15		0.08		7.7					
KERU	67 346	-iPg 16 14									
KERU		Pgm 16 14	57.5 0.21		0.0	009					
SUDU	133 278	eSg 16 15									
SUDU		iSg 16 15									
SUDU		Sgm 16 15	26.2 0.40	0.005							
SUDU		Sgm 16 15	26.3 0.44		0.01	6.7					
ALU	178 269	-									
ALU		Snm 16 15		0.011		7.9					
			38. 25 март	а. Черн	ое море, р	айон 5					
	0 = 1744	иин 40.5 <i>с</i> , ф=	_	_			0.3(7)	KD=1	10.0(7)		
		MSF	H=3.2(5), MI	D=3.3(7)), $Mc=2.9$,	Mw=3.3	3				
ANN	64 72	+iPg 17 4	52.3								
ANN		Pgm 17 4	52.5 0.30		0.7	715					
ANN		iSg 17 5	0.8								
ANN		Sgm 17 5	1.3 0.50		1.696	9.7					
KERU	67 354	-ePg 17 4	51.6								
KERU		iPg 17 4									
KERU		Pgm 17 4	52.5 0.18		0.1	67					
KERU		iSg 17 5	0.9								
KERU		Sgm 17 5	1.8 0.28	0.144		8.7					
KERU		Sgm 17 5	2.5 0.25		0.062		143	10.2	MD=3.4		
FEO	97 292	-iPg 17 4	58.7								
FEO			2.2 0.12		0.0	800					
FEO		eSg 17 5	11.8								
FEO			13.5 0.33	0.525		9.5			MSH=3.2		
				36							

											Π_1	родо.	лжени	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
FEO			Sgm	17	5	14.2	0.23		0.265			159	10.2	MD=3.4
SUDU	123	279	-iPg	17	5	1.9								
SUDU			Pgm	17	5	3.6	0.20			0.038				
SUDU			eSg	17		17.3								
SUDU			Sgm			20.3	0.39		0.504		9.9			MSH=3.3
SUDU			Sgm		5	20.7	0.41	0.204				114	9.8	MD=3.2
ALU	169	269	e(Pn)	17	5	7.2								
ALU			Pnm	17	5	9.5	0.22			0.014				
ALU			iSn			27.0								
ALU			Snm			32.4	0.22		0.177		9.9			MSH=3.1
ALU			Snm			32.5	0.26	0.139				125	9.9	MD=3.3
SIM	193	278	ePn			10.1								
SIM			Pnm			11.8	0.31			0.056				
SIM			eSn			31.8								
SIM			Snm			32.3	0.28	0.147						MSH=3.2
SIM			Snm			32.8	0.31		0.228		10.2	128	9.8	MD=3.3
YAL	191	263	-iPn			10.3								
YAL			e(Sn)			32.3								
AGIR	208	106	ePn			12.8								
AGIR	215	100	eSn			36.8								
TPS		108	iSn			38.4								
SEV	221	268	-ePn			14.6	0.22			0.000				
SEV			Pnm			16.1	0.22			0.009				
SEV			iSn			40.0	0.26	0.116						MCII_2 1
SEV SEV			Snm			41.7 41.7	0.36 0.28	0.116	0.083		9.6	125	10.1	MSH=3.1 MD=3.3
LZRR	242	109	Snm ePn			16.7	0.28		0.083		9.0	133	10.1	MID-3.3
LZRR	242	109	eSn			43.5								
TARU	323	284	ePn			25.4								
TARU	323	204	eSn			59.8						125	9.9	MD=3.3
17110			Con	1,	,		. 27 ма	рта. К	рым, р	айон 2	2	123	7.7	WID 5.5
			0 = 345	4мі	ін 4			45°N, λ=				$K_{\Pi} =$	4.5)	
YAL	8	60	ePg	3	54	43.8	•	ŕ		ŕ	ŕ	,		
YAL			iSg			46.3								
								арта. К						
								=34.07	${}^{\circ}E$, $h=1$	<i>5км, К</i>	$I_{\Pi} = 6$	5(1), 1	KD=7.	8(1)
YAL	8	60	+iPg											
YAL			_			51.9								
SEV	32	290	_			51.4								
SEV						51.8	0.12			0.026				
SEV						55.6								
SEV			_			56.2	0.30	0.035						
SEV			Sgm			56.3	0.27	**	0.039		6.5	34	7.8	
0 4	41		21.1					а. Черн				() Vr	_0.2/	5) 14 2.1
							=54.33	E, n=1	УКМ, К	.п=8.0=	<i>±0.4(4</i>), KL	j=δ.2(.	5), Mw=3.1
YAL	13	292	_			25.4								
YAL			ırg	5	41	25.5								

										П	родо.	лжен	ние таблицы 5.
1	2	3	4	5 6	7	8	9	10	11	12	13	14	15
YAL			iSg	5 4	1 28.5								
ALU	28	13	-ePg		1 27.6								
ALU			Pgm	5 4	1 28.6	0.22			0.077				
ALU			iSg	5 4	1 31.8								
ALU			Sgm	5 4	1 32.8	0.35	0.869			8.4			
ALU			Sgm	5 4	1 32.8	0.42		0.685			41	7.7	
SEV	53	284	+iPg	5 4	1 31.1								
SEV			Pgm	5 4	1 31.8	0.09			0.036				
SEV			iSg	5 4	1 38.3								
SEV			Sgm	5 4	1 39.8	0.20	0.124						
SEV			Sgm	5 4	1 39.8	0.20		0.249		9.2	70	8.8	
SIM	59	345	-ePg	5 4	1 32.2								
SIM			Pgm			0.28			0.051				
SIM			iSg	5 4	1 40.2								
SIM			Sgm	5 4	1 40.7	0.47	0.29			8.8			
SIM			Sgm	5 4	1 40.8	0.26		0.149			62	8.5	
SUDU	73	48	ePg	5 4	1 34.5								
SUDU			Pgm	5 4	1 38.7	0.34			0.025				
SUDU			iSg	5 4	1 44.2								
SUDU			Sgm	5 4	1 44.9	0.39		0.122		7.9			
SUDU			Sgm			0.39	0.034				55	8.3	
TARU	178	308	ePn		1 51.1								
TARU			e(Sn)	5 4	2 12.6						55		
							арта. К						
						=32.96	$8^{\circ}E$, $h=2$	21км, К	$T_{\Pi} = 8.2$	±0.1(4	1), KL)=8. <i>5</i>	5(4), $Mw=3.1$
TARU	38	246	+iPg	7 5	5 7.20								
TARU			eSg		5 12.7								
SIM	108	125	ePg		5 21.4								
SIM			Pgm	7 5	5 22.7	0.35			0.048				
SIM			e(Sg)		35.5								
SIM			Sgm		5 37.7	0.29	0.066						
SIM			Sgm		39.5	0.25		0.067		8.3	62	8.5	
SEV	121	153	-iPg		5 21.6								
SEV			Pgm		5 21.8	0.27			0.01				
SEV			iSg		36.9								
SEV			Sgm		5 37.2	0.30		0.047		8			
SEV			Sgm		38.1	0.25	0.017				84	9.1	
YAL	147	141	ePg		5 25.6								
YAL			eSg		6 43.8						(37)	(7.9)	
ALU	145	129			5 26.4								
ALU			Pgm		5 27.7	0.21			0.01				
ALU			eSg		5 44.5								
ALU			Sgm		6 46.2	0.31	0.04:	0.047		0.2			
ALU			Sgm		49.6	0.25	0.044			8.3			
SUDU	173	113	ePg		31.1	0.22			0.000				
SUDU			Pgm		32.3	0.23			0.008				
SUDU			eSg	/ 50	5 52.6								
							• •						

```
Продолжение таблицы 5.
                  4 5 6
            3
                                                 10
                                                        11
                                                             12
                                                                  13 | 14
SUDU
                  Sgm 7 56 56.5
                                    0.47
                                          0.013
SUDU
                                                 0.049
                  Sgm 7 56 58.0
                                   0.46
                                                              8.1
                                                                   58 8.4
                          № 43. 2 апреля. Черное море, район 1
       0=16ч 54мин 45.3с, \phi=44.43°N, \lambda=33.12°E, h=20км, K_{\Pi}=5.1±0.5(1), KD=6.8(1)
SEV
         46 65 e(Pg) 16 54 53.9
                  Pgm 16 54 54.0
                                                       0.001
SEV
                                     0.3
SEV
                   eSg 16 55
                              0.3
SEV
                  Sgm 16 55
                              1.5
                                    0.21
                                          0.004
                                                              5.1
SEV
                  Sgm 16 55
                              1.5
                                    0.22
                                                 0.004
                                                                   21 6.8
TARU
       115 337
                   ePg 16 55
                              5.7
TARU
                   eSg 16 55 19.8
                         № 44. 6 апреля. Черное море, район 2
             0=20ч 47мин 5.1с, \phi=44.26°N, \lambda=34.26°E, h=25км, K_{\Pi}=6.1\pm0.4(3)
YAL
                  +iPg 20 47 11.1
         26 342
                   eSg 20 47 15.7
YAL
                  -iPg 20 47 14.8
         48
ALU
            14
ALU
                  Pgm 20 47 14.9
                                                       0.005
                                    0.19
ALU
                   eSg 20 47 21.6
                  Sgm 20 47 21.7
ALU
                                          0.013
                                                              5.9
                                    0.23
                  Sgm 20 47 21.7
                                                 0.007
ALU
                                    0.28
                  +iPg 20 47 16.3
SEV
         55 305
                  Pgm 20 47 16.5
SEV
                                    0.24
                                                       0.003
SIM
         77 352
                   eSg 20 47 28.9
SIM
                  Sgm 20 47 29.4
                                    0.35
                                          0.009
                                                 0.012
                                                              6.7
SUDU
         91
            40
                   ePg 20 47 21.3
SUDU
                  Pgm 20 47 22.5
                                    0.18
                                                       0.002
SUDU
                   eSg 20 47 33.3
SUDU
                  Sgm 20 47 33.5
                                   0.27
SUDU
                  Sgm 20 47 33.7
                                   0.33
                                                0.007
                         № 45. 6 апреля. Черное море, район 2
   0=20ч 47мин 13.2c, \phi=44.3°N, \lambda=34.28°E, h=23км, K_\Pi=7.2\pm0.1(4), KD=7.1(2), Mw=2.6
YAL
        23 335
                  -iPg 20 47 18.7
YAL
                   eSg 20 47 23.0
ALU
            13
                  +ePg 20 47 22.1
ALU
                  Pgm 20 47 22.2
                                    0.33
                                                       0.016
ALU
                   eSg 20 47 28.8
ALU
                  Sgm 20 47 29.4
                                    0.44
                                          0.098
ALU
                  Sgm 20 47 30.7
                                                 0.064
                                                                   25 6.7
                                    0.34
SEV
         55 300
                  eSg 20 47 31.3
SEV
                  Sgm 20 47 31.6
                                    0.44
                                          0.051
                                                              7.3
SEV
                  Sgm 20 47 31.6
                                                 0.032
                                    0.34
                  eSg 20 47 36.2
SIM
         74 350
                  Sgm 20 47 36.3
                                          0.015
SIM
                                    0.30
                                                0.022
                                                              7.3
                  +ePg 20 47 28.7
SUDU
         87
             41
                  Pgm 20 47 28.8
                                                       0.002
SUDU
                                    0.30
SUDU
                   eSg 20 47 40.6
SUDU
                  Sgm 20 47 40.9
                                   0.27
                                          0.006
```

											П	родо.	тжені	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SUDU			Sgm	20	47	40.9	0.23		0.022		7.1	34	7.4	
					№	46. 6	апрел	я. Черн	ое мор	е, райо	он 2			
	0 = 2	Зч 2.	мин 13.	4c,	φ=.	44.25	°N, λ=	34.29°E	$h=23\mu$	км, K_{Π} =	=6.5±	=0.2(4)	, <i>KD</i> =	=6.7(3)
YAL	28	338	ePg	23	2	19.6								
YAL			eSg	23	2	24.2								
ALU	49	11	-iPg	23	2	23.2								
ALU			Pgm	23	2	23.4	0.31			0.009				
ALU			eSg	23	2	30.0								
ALU			Sgm	23	2	30.7	0.33	0.04						
ALU			Sgm	23	2	31.9	0.25		0.032		6.6			
SEV	58	304	ePg	23	2	24.6								
SEV			Pgm	23	2	25.0	0.20			0.003				
SEV			eSg	23	2	32.6								
SEV			Sgm	23	2	32.7	0.30	0.019			6.8			
SEV			Sgm	23	2	32.7	0.34		0.017			26	7.2	
SIM	79	350	eSg	23		37.3								
SIM			Sgm	23	2	37.5	0.40	0.009			6.3			
SIM			Sgm	23	2	37.5	0.45		0.009					
SUDU	90	38	-iPg	23	2	29.9								
SUDU			Pgm	23	2	31.0	0.25			0.003				
SUDU			eSg			41.8								
SUDU			Sgm	23		42.1	0.36	0.005						
SUDU			Sgm	23		42.1	0.31		0.012		6.3	23	6.5	
							_	я. Черн	_	-				
							$^{\circ}N$, $\lambda =$.	34.31°E	$h=20\kappa$	M , K_{Π} =	5.9±	0.3(3),	KD=	6.6(2)
YAL	34	339	ePg			8.7								
YAL			eSg			13.0								
ALU	53	8	-iPg			12.4								
ALU			Pgm			12.5	0.20			0.003				
ALU			eSg			19.1								
ALU			Sgm			20.3	0.36		0.013		6.2			
ALU			Sgm			20.6	0.22	0.02				20		
SEV		307	ePg			14.0							6.2	
SEV	63		Pgm			14.3	0.18			0.002				
SEV	63		eSg			21.5								
SEV	63		Sgm			21.7	0.44	0.012			6		_	
SEV	63						0.23		0.005			23	7	
SUDU	93	35	eSg											
SUDU			_			31.0	0.33	0.002	0.004					
SUDU			Sgm	23		31.0			0.004		5.5			
	0 2	0 4						реля. К				. 0 1/2	\ <i>I</i> ZF	5.071)
***							ζ 'N, λ=	=34.31°	\pm , $h=21$	κM , K_{Π}	=3.8	±0.1(3), KD	=5.8(1)
YAL	13	255	_			57.5								
YAL	10	~ .	iSg			0.6								
ALU	19	24				59.8	0.12			0.000				
ALU						59.9	0.13			0.009				
ALU			eSg	20	41	3.4								

											П	родол	пжеі	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ALU			Sgm	20		4.4		0.04						
ALU			(Sgm)			4.4			0.024		6	16	5.8	}
SEV	50	275	eSg			10.3								
SEV			Sgm			11.2	0.15	0.002	0.005		5.8			
SUDU	68	54				17.3								
SUDU			_			17.7		0.003						
SUDU			_			17.7			0.008		5.7			
			Č					4 апрел		он 4				
SUDU			e	2	51	53.7								
SUDU			iSg	2	51	54.6								
SUDU			Sgm	2	51	54.7	0.19		0.014		< 4			
SUDU			Sgm	2	51	54.7	0.17	0.003						
				Νo	50	. 18 a	преля	. Нижн	яя Куб	ань, ра	айон	5		
		0=	6ч 32м	ин .	5 <i>7</i> .	<i>θc,</i> φ=	= <i>45.02</i>	°N, λ=3	7.57°E,	$h=33\kappa$	M , K_{Π}	$=8.5 \pm$	<i>±0.3(</i>	(2)
ANN	25	232	+ePg	6	33	3.9								
ANN			Pgm	6	33	4.3	0.20			0.573				
ANN			eSg	6	33	8.6								
ANN			Sgm	6	33	9.5	0.20	1.105			8.7			
GL1R	66	143	-ePg	6	33	9.3								
GL1R			iSg	6	33	17.6								
KERU	92	291	e	6	33	35.1								
KERU			em	6	33	35.2	0.17		0.001		8			
YAL	276	259	e(Pn)	6	33	36.4								
YAL			eSn	6	34	3.7								
SEV	311	262	e(Pn)	6	33	39.3								
SEV			Pnm	6	33	41.6	0.11			0.002				
SEV			eSn	6	34	12.3								
SEV			Snm	6	34	15.2	0.20		0.005					
SEV			Snm	6	34	15.6	0.19	0.009			8.2			
							_	тя. Чер і	_	_				
								=35.19°	E, $h = 19$	κ м, K_{\square}	=6.6	±0.3(4	!), KI	D=6.6(3)
SUDU	24	321	-iPg	20	17	29.7								
SUDU			Pgm	20	17	31.2	0.20			0.014				
SUDU			_			33.7								
SUDU			_			33.9	0.20	0.046			6.2	29	7	,
FEO	37	26				36.8								
FEO						40.0								
FEO						40.7					6.4			
FEO						40.7			0.019					
ALU	62	267				35.3								
ALU			_			35.5	0.17			0.017				
ALU			_			43.5								
ALU			_			43.8					6.6			
ALU			_				(0.16)	(0.026)			19	6.1		
SIM	88	288				40.0								
SIM			_			40.4				0.019				
SIM			e	20	17	51.2								

												П	одол	ж	ени	е таблиц	цы 5
1	2	3	4	5	6	7	8	9	10	11	1	2	13	14		15	
SIM			iSg	20	17	51.5											
SIM			-			51.8	0.25	0.021				7					
SIM						51.8	0.30		0.015				23	6.	.6		
YAL	86	253	ePg	20	17	38.5											
YAL			eSg	20	17	50.0											
SEV	121	262	e(Sg)														
							_	я. Чері	-	_							
							?°N, λ=	=35.19°I	E, h=19	<i>жм,</i> 1	$K_{\Pi}=3$	5.8±	=0.2(3 _,), K	(D=	=6.4(2)	
SUDU	24	321	_			46.7											
SUDU			_			48.3	0.23			0.0	07						
SUDU			_			50.8											
SUDU			-			51.0	0.20		0.025		:	5.6					
SUDU			-			51.0	0.16	0.01					28	6.	.9		
ALU	62	267				51.5											
ALU			-			51.7	0.17			0.0	06						
ALU			_			59.8											
ALU			Sgm			0	0.19	0.011			(6.1	16	5.	.8		
FEO	37	26	_			56.1											
FEO			Sgm			56.2	0.22	0.011	0.011			5.7					
							_	я. Чері	-	_			0.0/5			(1 (2)	
							$^{\circ}N, \lambda =$	<i>35.12°1</i>	E, $h=29$	У КМ, 1	$K_{\Pi} = \ell$). <i>I</i> ±	=0.2(5)), K	(D=	=6.1(3)	
SUDU	15	319	_			45.0											
SUDU						46.6	0.22			0.0	11						
SUDU			_			49.1	0.40										
SUDU			_			49.3	0.19	0.015	0.035		:	5.9	1.7	_	0		
SUDU	22	4.1	-			49.3	0.17	0.015					17	5.	.9		
FEO	33	41	_			48.8	0.12			0.0	07						
FEO			-			49.3	0.13			0.00	0 /						
FEO			_			54.3	0.22		0.010			- 0					
FEO			_			54.5	0.22	0.015	0.019		•	5.9	12	-	4		
FEO	50	250	-			54.5	0.19	0.015					13	6.	.4		
ALU	38	259	+ePg				0.10			0.00	00						
ALU						50.0	0.19			0.0	08						
ALU						58.1	0.10	0.015				6.4					
ALU			-			58.4 58.4	0.19	0.015	0.01		,	0.4	10	6	1		
ALU	01	201	_				0.22		0.01				19	6.	. 1		
SIM	01	284	eSg			6.1	0.20	0.007	0.013			6.2					
SIM SEV	117	258	-			13.2	0.30	0.007	0.013		,	0.2					
SEV	11/	230				14.0	0.20		0.002		,	6.1					
SEV SEV			_			16.9	0.20	0.001	0.002		,	0.1					
) L V			Sgill					я. Чері	TUE MO	ne n	ดหักบ	. 5					
	0 = 6	iu 36	MUU 57					з. чер і 36.91°Е					0 3/3)) K	D=	8 1(1)	
ANN	42	49 49	мин 57. ePg		φ 37	5.8	ıv, /\−	50.71 E	, n-23	$\Lambda M, \Gamma$	-II-/	. ⊅±	v.5(5)	, A	<i>D</i> −	0.1(1)	
ANN	42	47	Pgm		37	6.1	0.20			0.0	03						
ANN			eSg			11.6	0.20			0.0	03						
			-			12.3	0.20	0.236									
ANN			Sgm	O	31	12.3	0.20	0.230									

										П	одо.	лже	ние	таблицы :
1	2	3	4	5 6	7	8	9	10	11	12	13	14		15
ANN			Sgm	6 37	7 12.4	0.20		0.21		7.7				
KERU	83	335	ePg	6 37	7 12.3									
KERU			Pgm	6 37	7 12.4	0.17			0.005					
SUDU	154	281	eSg	6 37	7 38.5									
SUDU			Sgm	6 37	7 38.7	0.25		0.007		6.9				
SUDU			Sgm	6 37	7 38.8	0.31	0.006							
YAL	219	267	e(Sn)	6 37	7 53.0									
SEV	256	269	ePn	6 37	7 33.3									
SEV			eSn	6 38	3 0									
SEV			Snm	6 38	3 0.2	0.41		0.008		7.2				
SEV			Snm	6 38	3 0.4	0.36	0.006				41	8.1	1	
				№	55. 27	апрел	я. Чері	ное мој	ое, рай	он 2				
0=1	2ч 51.	мин З	<i>33.6c,</i> φ	=44.2	?3°N, λ	=34.33	$3^{\circ}E$, $h=2$	22км, <i>К</i>	$T_{\Pi} = 8.5 \pm$	=0.2(5), KL) =8.	6(6)	, Mw=2.9
YAL		335			40.4					,				α=153°
YAL			iSg		45.3									
ALU	51	8	+ePg		44.7									
ALU					44.8	0.2			0.048					
ALU			iSg		51.6									
ALU			Sgm		52.5	0.23	0.343			8.7				
ALU			Sgm		52.5	0.34		0.203			49	8.1	l	
SEV	62	306	+ePg		45.3									
SEV	_		Pgm		48.2									
SEV			eSg		53.5									
SEV			Sgm		55.0	0.25		0.081						
SEV					56.4		0.085	0.001		8.3	63	8.9)	
SIM	82	349	ePg		48.6	0.01	0.002			0.0	0.0	0.,		
SIM	~ _	.,	iSg		59.1									
SIM					0.4	0.24		0.084						
SIM			Sgm			0.28	0.103	0.00.		8.6	63	8.5	5	
SUDU	90	397	-iPg		49.9	0.20	0.105			0.0	0.5	0		
SUDU	70	371	Pgm		53.2	0.25			0.016					
SUDU			iSg	2 52		0.25			0.010					
SUDU			Sgm			0.38		0.105		8.1				
SUDU			Sgm	2 52		0.21	0.027	0.103		0.1	68	8.7	7	
FEO	121	45	e(Pg)		56.4	0.21	0.027				50	0.	,	
FEO	121	15	Pgm		57.0	0.12			0.027					
FEO			_		2 12.1	0.12			0.027					
FEO						0.20	0.046			8.6				
FEO			Sgm		2 13.0	0.20	0.070	0.037		0.0	45	8.7	7	
TARU	120	313	-ePn			0.20		0.05/			73	0.	'	
TARU	109	313	eSn		29.4						65			
IAKU			COII			апрач	g Uani	IOO MOI	ne neë	лн 2	03			
	0-	2,, 2-	20 C			_	я. Чері 84.31°Е,	_	_		1/1	VΓ) – 7	0(1)
VAI						ıv, ∧≕3	14.31 E,	n-22K	м, ∧∏=	/. J ±(y.1 (4)	, KL	<i>,</i> —/.	7(4)
YAL	31	338	-ePg		3 27.3						21	7 (2	
YAL	5 1	10	iSg		3 32.1						34	7.8)	
ALU	51	10	ePg		30.7									
ALU			iPg	3 3	3 30.8		40							

											П	[родо:	пжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ALU			Pgm	3	3	30.9	0.16	•		0.014			•	
ALU			iSg	3	3	37.2								
ALU			Sgm	3	3	38.3	0.25	0.062						
ALU			Sgm	3	3	38.3	0.34		0.083		7.1	39	7.6	
SEV	61	306	ePg	3	3	32.5								
SEV			Pgm	3	3	35.2	0.23			0.01				
SEV			eSg	3	3	40.6								
SEV			Sgm	3	3	41.1	0.28	0.022						
SEV			Sgm	3	3	41.9	0.39		0.054		7.5	45	8.3	
SIM	81	350	e(Sg)	3	3	45.5								
SIM			Sgm	3	3	46.8	0.30		0.016					
SIM			Sgm	3	3	47.0	0.40	0.024			7.3			
SUDU	91	38	-ePg	3	3	36.8								
SUDU			Pgm	3	3	37.5	0.15			0.005				
SUDU			iSg	3	3	48.5								
SUDU			Sgm	3	3	49.3	0.22		0.028		7.4			
SUDU			Sgm	3	3	50.0	0.22	0.008				47	7.8	
TARU	189	314	e(Pn)	3	3	52.7								
TARU			eSn	3	4	15.5								
							апрел	я. Черн	ое мор	е, рай	он 5			
	$\theta =$	2ч 38.	мин 33.				_	36.12°E	_	_		0.3(4)	KD=	=8.0(2)
FEO		319	e			48.4	.,		,	,		(-)		
FEO			eSg		39	0.0								
FEO			Sgm		39	0.5	0.31		0.064					
FEO			Sgm		39	0.9	0.29	0.071			8			
SUDU	102	300	-ePg		38	51.1								
SUDU			eSg		39	2.8						39	7.6	
ANN	107	62	e(Pg)		38	51.2								
ANN			Pgm		38	52.2	1.0			0.01				
ANN			eSg		39	4.8								
ANN			Sgm		39	5.2	0.5		0.02		7			
YAL	156	273	eSn		39	18.9								
SIM		291	e(Sn)		39	20.9								
SIM			Snm		39	23.6	0.5		0.021		7.2			
SIM			Snm			25.9	0.5	0.019						
SEV	194	275	e(Pn)		39	3.9								
SEV			eSn			27.9								
SEV			Snm			30.4	0.38	0.006			7.3			
SEV			Snm			30.7	0.27		0.004			42	8.2	
•								я. Черн		е, рай	он 3			
	0=6	бч 30л	лин 35.	8c,	$\varphi = A$	44.62°	$^{\circ}N$, $\lambda =$.	34.47°E, 0=2.9(7)	h=22F	км, K_{Π} =	=9. <i>3</i> =), KD	=9.1(6)
ALU	o	324	-iPg			40.0	τ_{j} , will	- 4.2(1)	+ +	/ , 1V1 VV	5.7	r		α=119°
ALU	J	J4 1	iSg			43.1		-		-		87	9.1	MD=3.0
	20	241	-iPg			42.3						07	7.1	14117-2:0
YAL	29	∠41	iSg			47.0						61	00	MD-2.6
YAL SIM	46	324	ePg			45.8						01	8.8	MD=2.6
01141	70	<i>5</i> ∠ ⊤	cı g	U	50	¬ J.0								

											П	родол	іжени	е таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SIM			Pgm	6	30	48.3	0.35			0.483				
SIM			iSg	6	30	52.4								Mc=2.7
SIM			Sgm	6	30	54.0	0.28		0.461		9.2			MSH=2.9
SIM			Sgm	6	30	55.1	0.33	0.622				82	9	MD=2.9
SUDU	51	55	-iPg	6	30	45.6								
SUDU			Pgm	6	30	46.0	0.12			0.209				
SUDU			eSg	6	30	53.0								MSH=3.1
SUDU			Sgm	6	30	55.8	0.40		1.1		9.1	84	9.1	MD=2.9
SEV	63	264	-ePg	6	30	47.7								
SEV			Pgm	6	30	49.1	0.11			0.028				
SEV			iSg	6	30	56.3								
SEV			Sgm	6	30	56.6	0.28	0.142			9.2			MSH=2.4
SEV			Sgm	6	30	57.7	0.18		0.119			99	9.5	MD=3.1
FEO	85	59	-iPg	6	30	52.4								
FEO			Pgm	6	30	52.6	0.20			0.19				
FEO			eSg	6	31	3.8								
FEO			Sgm	6	31	7.8	0.27		0.254					MSH=3.1
FEO			Sgm	6	31	7.9	0.27	0.467			9.8	59	9.3	MD=2.7
TARU	174	301	-iPn	6	31	6.2								
TARU			eSn	6	31	27.9						82		MD=2.9
					N	⊵ 59. 1	l мая.	Черное	е море,	район	2			
	0=	24 3A	иин 6.8	<i>c</i> , ¢	=4	4.36°1	V , $\lambda = 3$	4.42°E,	$h=24\kappa$	и, $K_{\Pi}=S$	5.5±0	1.2(2),	KD=5	3(2)
YAL	25	304	eSg	2	3	17.7								
ALU	36	358	ePg	2	3	14.8								
ALU			Pgm	2	3	14.9	0.14			0.008				
ALU			eSg	2	3	20.2								
ALU			Sgm	2	3	20.6	0.36	0.016			5.3			
ALU			Sgm	2	3	20.6	0.33		0.009			10	4.9	
SEV	62	289	ePg	2	3	18.6								
SEV			Pgm	2	3	18.7								
SEV			eSg	2	3	26.9								
SEV			Sgm	2	3	27.3	0.42	0.003	0.006		5.6	12	5.7	
					N	<u>60. 2</u>	2 мая.	Черное	е море,	район	5			
		0 =	4ч 50м	ин .	54.5	$\bar{c}c$, $\varphi =$	44.65°	$N, \bar{\lambda}=30$	5.74°E,	$h=18\kappa$	и, К∏	$= 7.0 \pm$	=0.3(2)	
ANN	53	60	ePg	4	51	4.6								
ANN			Pgm	4	51	5.0	0.4			0.02				
ANN			eSg			11.5								
ANN			Sgm	4	51	11.9	0.2	0.144			7.3			
SUDU	140	282	eSn			33.6								
SUDU			Snm			34.0	0.61	0.007						
SUDU			Snm			34.0	0.44		0.005		5.9			
SEV	242	268	eSn			56.6								
SEV			Snm			56.8	0.34	0.002						
SEV			Snm			56.8	0.22		0.001		6.7			
					N	<u>61. 5</u>	5 мая.	Черное	е море,	район	5			
		0=	=18u 39	ми	н 5	<i>2c</i> , φ=	=44.14	°N, λ=3	7.76°E,	$h=5\kappa N$	K_{Π}	=7.4±	0.3(3)	
ANN	89	337	ePg	18	39	20.4								

```
Продолжение таблицы 5.
        2
            3
                       5 6
                                                  10
                                                               12 | 13 | 14
ANN
                  Pgm 18 39 21.0
                                    0.20
                                                        0.017
ANN
                   eSg 18 39 30.7
ANN
                   eSg 18 39 31.0
ANN
                  Sgm 18 39
                              32.7
                                    0.30
                                           0.079
                                                               7.9
                  Sgm 18 39
                                                  0.078
ANN
                              32.7
                                    0.20
       234 292
SUDU
                   eSn 18 40
                               8.5
                                                  0.012
                                                               7.3
SUDU
                  Snm 18 40
                               9.1
                                    0.47
SUDU
                  Snm 18 40
                               9.4
                                    0.33
                                          0.004
SEV
       328 279
                   eSn 18 40 28.2
SEV
                  Snm 18 40 29.3
                                    0.38
                                          0.002
SEV
                  Snm 18 40 29.3
                                    0.23
                                                  0.002
                                                               7.1
                            № 62. 9 мая. Черное море, район 2
       0=10ч 23мин 23.3c, \phi=43.85°N, \lambda=34.33°E, h=28км, K_{\Pi}=6.5\pm0.1(3), KD=6.6(2)
                  +iPg 10 23 36.8
YAL
         72 349
                   eSg 10 23 46.3
YAL
                   eSg 10 23 50.8
ALU
         93
              4
                  Sgm 10 23 51.1
ALU
                                    0.33
                                          0.017
                                                               6.6
SEV
         93 327
                   ePg 10 23 39.5
                                                        0.001
SEV
                  Pgm 10 23 39.6
                                    0.31
                   eSg 10 23 50.9
SEV
                  Sgm 10 23 51.0
SEV
                                    0.23
                                           0.006
                  Sgm 10 23 51.0
                                                 0.007
SEV
                                                                     20
                                                                        6.7
                                    0.27
                                                               6.6
                  e(Pg) 10 23 45.3
SUDU
       127
             25
                  Pgm 10 23 45.5
                                                        0.004
SUDU
                                    0.38
SUDU
                  e(Sg) 10 24
                               0.8
                  Sgm 10 24
SUDU
                               0.9
                                    0.28
                                                 0.006
                                                               6.3
                                                                     22
                                                                        6.4
                               № 63. 10 мая. Крым, район 2
         0=154 47мин 35.9c, \varphi=44.44°N, \lambda=34.01°E, h=15км, K_{\Pi}=5.2(1), KD=5.3(1)
YAL
                  +iPg 15 47 39.6
                                                                                 \alpha=230^{\circ}
YAL
                   eSg 15 47 42.1
SEV
         29 294
                   -iPg 15 47 41.6
                                                                                 α=104°
SEV
                  Pgm 15 47 41.7
                                                        0.007
                                    0.14
SEV
                   eSg 15 47 45.8
SEV
                  Sgm 15 47 45.9
                                           0.008
                                    0.25
                  Sgm 15 47 46.3
                                                   0.01
                                                               5.2
                                                                    10 5.3
SEV
                                    0.30
                                  № 64. 11 мая. Район 4
          0=20ч 3мин 8.4с, возможно, афтершок землетрясения №53, Кп=4.4(1)
SUDU
         24 321
                   eSg 20 3 17.2
                  Sgm 20 3 22.5 0.42 0.002 0.006
SUDU
                           № 65. 19 мая. Черное море, район 2
        0=24 4мин 48.7c, \varphi=44.23°N, \lambda=34.25°E, h=15км, K_{\Pi}=5.2\pm0.5(1), KD=5.3(2)
                  +ePg 2 4 54.6
YAL
         29 346
                   iSg 2 4 58.8
YAL
                                                                                   **
SEV
         56 309
                                    0.23
                                                        0.002
                  Pgm
SEV
                                    0.34 0.004 0.002
                                                               5.2
                  Sgm
                           № 66. 26 мая. Черное море, район 1
       0=11ч 35мин 52.0с, \varphi=43.93°N, \lambda=33.67°E, h=27км, K_{\Pi}=6.9\pm0.6(2), KD=7.5(1)
```

											П	родол	лжеі	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SEV	68	362	ePg	11	36	5.0								
SEV			Pgm	11	36	5.1	0.17			0.001				
SEV			eSg	11	36	14.3								
SEV			Sgm	11	36	14.6	0.23	0.009			6.3			
SEV			Sgm	11	36	14.9	0.22		0.006			30	7.5	
YAL	73	33	eSg	11	36	15.5								
SUDU	150	46	e	11	36	16.1								
SUDU			eSg	11	36	33.5								
SUDU						34.8	0.30	0.005						
SUDU						34.8	0.22		0.02		7.5			
			υ					. Черно	е море	, райо				
	0=	=12u 2	25мин	33.7				$\lambda = 33.14$	_	-		.5(1),	KD=	=7.8(1)
SEV	73	38				45.6	Í		ŕ	,	••	(),		()
SEV			_			48.3	0.18			0.002				
SEV			_			54.7								
SEV			_			54.9								
SEV			_			55.3	0.27	0.027						
SEV			_			55.3	0.22	0.027	0.033		7.5	34	7.8	
TARU	150	346	_			59.7	0.22		0.055		7.5	57	7.0	
TARU	137	370				18.7								
TAKU			CSII	12			импа	. Черно	e Mone	กอหัก	u 2			
	0-1	16u 11	nn 16	30								0 2/3) KI	0=6.7(1)
YAL		323	ин 40. ePg		•	53.3	14, 70-	34.30 E	n, n-2/1	$\mathcal{L}_{n}, \mathcal{L}_{\Pi}$	-0.1 ±	0.2(3)	, KL)-0.7(1)
YAL	2)	323	eSg			58.0								
ALU	45	2	eSg		2	1.5								
ALU	43	2	Sgm				0.30	0.04			6.4			
			-				0.27	0.04	0.031		0.4			
ALU	62	200	Sgm ePg				0.27		0.031					
SEV	03	299	_			57.9	0.21			0.004				
SEV			Pgm			58.0	0.31			0.004				
SEV			eSg		2		0.21	0.007						
SEV			Sgm				0.31	0.007	0.011		5.0	20	(7	
SEV	0.4	26	Sgm		2		0.47		0.011		5.9	20	6.7	
SUDU	84	36	eSg			11.9	0.10	0.002						
SUDU			Sgm			12.9	0.19	0.003	0.01		<i>(</i> 1			
SUDU			Sgm	16		12.9	0.25	11	0.01		6.1			
	0 3	0 20	2.5	7.0				. Черно				. 0. 1./4	() IZ	D 7.1/1)
EEO							~/V, λ=	=33.94°I	E, n=12	′км, Кп	=0.0	±0.1(4	9, KI	D=7.1(1)
FEO	/6	325	eSg			0.6		0.046						
FEO			Sgm			1.2	0.27	0.016	0.004					
FEO		202	Sgm			1.6	0.31		0.021		6.5			
SUDU	89	303				53.5								
SUDU			_			53.7	0.23			0.002				
SUDU			eSg			4.2								
SUDU			Sgm			5.9	0.28	0.021			6.7			
SUDU			Sgm			5.9	0.20		0.006			31	7.1	
ALU	125	282	_			14.6								
ALU			Sgm	20	31	16.6	0.24	0.007			6.5			
								47						

												Π	[родс	Ω	кені	ие та	блиц	ы 5
1	2	3	4	5	6	7	8	9	10		11	12	13	_	14		15	
YAL	142	272				19.8				1				1				
SEV		274	_			27.2												
SEV						28.7	0.20	0.001										
SEV						28.9	0.41		0.004	ļ		6.7						
								. Черно	е мор	e, 1	райо	н 4						
		0 = 1	9ч 52л	лин				PN, λ=3					$T_{\Pi} = 6.2$	2±	0.4(2	9		
FEO	76	325	eSg	19	52	41.3												
FEO			Sgm	19	52	41.6	0.30	0.024										
FEO			Sgm	19	52	41.6	0.31		0.018	3		6.6						
SUDU	89	303	eSg	19	52	44.9												
SUDU			Sgm	19	52	45.0	0.53	0.003	0.013	,		5.8						
					N_2	71.9	июня.	. Черно	е мор	e, j	райоі	н 9						
	0 = 1	9ч 38	Вмин 4.	7c,	φ=.	43.22	°N, λ=.	33.51°E	h = 34	!км	ı, K _Π =	=8. <i>5</i> =	±0.2(4	<i>4),</i>	KD=	=8.7 <i>(1</i>	1)	
SEV	148	5	ePn	19	38	26.8												
SEV			Pnm	19	38	26.9	0.25			(0.005							
SEV			eSn	19	38	43.0												
SEV			Snm	19	38	44.5	0.36		0.062			8.6						
SEV			Snm	19	38	45.5	0.38	0.046					53	,	8.7			
YAL	150	20	ePn	19	38	27.3												
YAL			eSn	19	38	43.7												
ALU	177	24	eSn	19	38	50.0												
ALU			Snm	19	38	51.7	0.23	0.053				8.6						
ALU			Snm	19	38	51.7	0.34		0.05	;								
SIM	198	14	eSn	19	38	55.5												
SIM			Snm	19	38	56.7	0.40		0.025	,		8.3						
SIM			Snm	19	38	57.5	0.33	0.043										
SUDU	220	32	eSn	19	38	59.9												
SUDU			Snm	19	39	3.7	0.39		0.042			8.3						
SUDU			Snm	19	39	4.6	0.47	0.01										
TARU	252	342	eSn	19	39	7.1												
					№	72. 12	2 июня	. Черн	ое мор	e,	райо	н 5						
	$\theta =$	2ч 32	мин 2.0	Эс, (φ=4	4.68°	$^{\circ}N$, $\lambda=3$	6.92°E,	h=25	км,	$K_{\Pi}=$	7.1±	0.3(4)), 1	KD=	7.9(3)	
ANN	39	53	ePg	2	32	10.1												
ANN			Pgm	2	32	10.3	0.20				0.04							
ANN			eSg	2	32	15.6												
ANN			Sgm	2	32	15.8	0.20		0.221									
ANN			Sgm	2	32	15.9	0.30	0.366				7.7						
KERU	79	332	ePg	2	32	17.3												
KERU			Pgm	2	32	17.7	0.17				0.04							
KERU			e	2	32	21.7												
KERU			e			30.7												
KERU			Sgm			31.1	0.13	0.003				(6.8)						
KERU			Sgm			32.3	0.30		0.006)			(30)		7.1			
SUDU	154	279	e(Pn)															
SUDU			Pnm			28.7	0.20			(0.002							
SUDU			eSn			42.7												
SUDU			Snm	2	32	44.6	0.20		0.006)		6.8						
								40										

											П	родо	пжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SUDU			Snm	2	32	44.6	0.28	0.003				56	8.3	
YAL	220	265	eSn	2	32	57.3								
SIM	223	278	eSn	2	32	58.0								
SEV	257	267	ePn	2	32	38.4								
SEV			Pnm	2	32	40.7	0.14			0.001				
SEV			eSn	2	33	5.8								
SEV			Snm	2	33	7.3	0.30	0.005			7.2			
SEV			Snm	2	33	7.3	0.25		0.004			43	8.2	
						№ 73	3. 15 иі	юня. К	рым, р	айон 3				
		$\theta =$	18ч 45.	мин	ı 58.	. <i>8c</i> , φ	=44.92	?°N, λ=.	34.67°E	$E, h=5\kappa$	м, Кг	$_{\rm I}$ =5.0=	$\pm 0.5(1)$)
SUDU	26	99	ePg	18	46	3.0								α =254°
SUDU			Pgm	18	46	3.1	0.14			0.003				
SUDU			eSg	18	46	6.0								
SUDU			Sgm	18	46	6.5	0.19	0.011						
SUDU			Sgm	18	46	6.5	0.17		0.018		5			
ALU	33	220	eSg	18	46	8.6								
ALU			Sgm	18	46	8.8	0.25	0.007			(4.3)			
SIM	44	275	e(Sg)	18	46	11.5								
					N_2	74. 10	б июня	і. Черн	ое мор	е, райс	эн 5			
	0=1	9ч 53	5мин 4.	2c,	φ=	44.69	°N, λ=.	37.47°E	h=26	км, K_{Π}	=7.1±	=0.2(3)), KD=	=8.1(1)
ANN	25	331	ePg	19	55	10.5								
ANN			Pgm	19	55	10.6	0.20			0.025				
ANN			eSg	19	55	14.8								
ANN			Sgm	19	55	15.1	0.30		0.257		7.4			
ANN			Sgm	19	55	15.2	0.20	0.163						
KERU	106	312	e(Sg)	19	55	34.2								
SUDU	196	278	ePn	19	55	32.4								
SUDU			Pnm	19	55	33	0.25			0.002				
SUDU			eSn	19	55	56.1								
SUDU			Snm	19	55	56.5	0.36	0.002						
SUDU			Snm	19	55	57.8	0.27		0.003		7			
YAL	263	266	eSn	19	56	9.9								
SEV	300	268	e(Pn)	19	55	45.4								
SEV			eSn	19	56	17.3								
SEV			Snm	19	56	18.8	0.14		0.001		6.9			
SEV			Snm	19		19.4	0.33	0.002				40	8.1	
								ı. Черн						
	$\theta =$	5ч 25	мин 8.0	6c, (φ=4	14.42°	N , $\lambda = 3$	33.53°E,	h=15k	см, K_{Π} =	=4.3±	0.5(1)	, <i>KD</i> =	=5.7 <i>(1)</i>
SEV	18	42	ePg	5	25	12.4								α=222°
SEV			Pgm	5	25	12.6	0.13			0.002				
SEV			eSg	5	25	15.5								
SEV			Sgm	5	25	15.6	0.20	0.004						
SEV			Sgm	5	25	16.4	0.17		0.004		4.3	12	5.7	
							№ 76. 1	9 июня	і. Райо	н 3				
ALU						47.3								
ALU			_			48.1	0.28	0.024		0.006				
ALU			Sgm	21	45	48.1	0.45		0.035					
								40						

	_	-		_	<u> </u>				4.6	4.7				ие таблицы 5
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
								. Черн						
							0=44.3.	3°N, λ=	34.16°E	E, h=15	5 км, 1	KD=4	1.3(1)	
YAL	18	359	_			14.1								α=179°
YAL			eSg	15		17.1						6	4.3	
								. Черно	_	-				
							$N, \lambda=3$	6.78°E,	$h=10 \kappa$	M , K_{Π} =	=8.3±	:0.2(4 ₎), KD=	=9. <i>0(3)</i>
ANN	47	66	ePg			34.5								
ANN			Pgm			34.7	0.20			1.258				
ANN			eSg			40.0								
ANN			Sgm			40.3	0.40	1.136						
ANN			Sgm			40.4	0.30		1.797		8.1			
SUDU	142	279	ePg			50.8								
SUDU			Pgm			53.5	0.22			0.006				
SUDU			eSg			7.9								
SUDU			Sgm				0.37	0.028						
SUDU			Sgm				0.21		0.03		8.2	78	9	
ALU	188	270	eSn			17.6								
ALU			Snm			21.6	0.30	0.034			8.4			
ALU	200	264	Snm			22.0	0.41		0.03					
YAL	209	264	-ePn			58.5							0.7	
YAL	22.4	110	eSn			22.5						56	8.7	
LZRR		112	iPn			59.5								
SEV	240	267	ePn		8	2.8	0.27			0.000				
SEV			Pnm eSn		8		0.37			0.009				
SEV SEV						30.2	0.32	0.026			8.5			
SEV			Snm Snm	5		31.3 31.4	0.32	0.020	0.011		0.5	74	9.3	
SOC	266	117	iP	5	7		0.23		0.011			/4	9.3	
TARU		284	eР			14.9								
TARU	372	207	eS	5		50.7								
17110			CD	,			5 имия	. Черно	ne Mone	- ทอหัก	ы 1			
	0-	- 1 211	21 11111	10				$\lambda = 33.18$				6(1)	KD-2	7.5(1)
SEV	49	56	e(Pg)				29 IV, I	V-33.10	E, n-1	1 <i>3</i> KM, 1	1 11-3	.0(1),	KD^{-}	$\alpha=236^{\circ}$
SEV	42	30				59.6	0.21			0.002				α-230
SEV			eSg			5.6	0.21			0.002				
SEV			Sgm			7.2	0.16		0.005		5.6			
SEV			_					0.008	0.003		5.0	31	7.5	
TARU	131	339				13.0	0.27	0.000				31	7.5	
TARU	131	337				29.9						35		
17110			CDS				тюня.	Нижня	я Куба	нь. nai	йон ′			
0=	15u 4	мии	43 1c 0						-				= 3.40	1), Mw=3.5
ANN		228		•		11.9	, 20.0.	. ш, п.	, 1011, 11P	0.74	J. O(2)	,, 1111	5.7(1	1, 11111 3.3
ANN	13)	220	_			12.0	0.20			0.039				
ANN						30.3	0.20			0.00)				
ANN						35.9	0.30	0.138						
ANN						35.9	0.40	0.150	0.211		9.4			
LZRR	217	168	ePn0								~			
		100	-1 110		-	1,.0		50						

											П	родол	іжен	ние табл	ицы 5
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	5
SOC	262	164	ePn	15	5	21.7									
SEV	427	252	e(Pn)	15	5	45.2									
SEV			Pnm		5	47.1	0.31			0.003					
SEV			eSn	15		27.9									
SEV			Snm	15	6	32.2	0.28	0.005							
SEV			Snm	15		32.2	0.19		0.006			165		MD=	3.4
								. Черно							
)°N, λ=	:36.14°E	E, h=24	κ м, K_{Γ}	_I =8.1=	±0.1(6 ₎), KI	D=8.5(5)	
FEO	64	293	_			24.3									
FEO			_			24.8	0.19			0.234					
FEO			_			33.2									
FEO			-			33.4	0.30	0.126							
FEO			_			34.3	0.20		0.126		8.1	39	8.5		
SUDU	91	277	_			27.8		0	-	+				$\alpha = 9$	95
SUDU						28.8	0.16			0.055					
SUDU						39.4									
SUDU			Sgm	21	23	41.0	0.22	0.021	0.067		8.1	67	8.6		
ANN	93	84	ePg	21	23	28.9									
ANN			Pgm	21	23	29.2	0.20			0.012					
ANN			eSg	21	23	41.1									
ANN			Sgm	21	23	41.9	0.30	0.086							
ANN			Sgm	21	23	42.0	0.40		0.122		8.1				
ALU	138	265	ePn	21	23	34.4									
ALU			Pnm	21	23	34.8	0.33			0.027					
ALU			eSn	21	23	50.7									
ALU			Snm	21	23	51.2	0.31		0.032		8				
ALU			Snm	21	23	51.4	0.25	0.031				60	8.4		
SIM	160	277	ePn	21	23	36.1									
SIM			Pnm	21	23	37.2	0.19			0.009					
SIM			e(Sn)	21	23	54.3									
SIM			Snm	21	23	54.7	0.21	0.018							
SIM			Snm	21	23	55.7	0.35		0.034		8.1	55	8.2		
YAL	161	258	ePn	21	23	37.3									
YAL			eSn	21	23	55.7									
SEV	197	263	ePn	21	23	41.4									
SEV			Pnm	21	23	41.5	0.31			0.008					
SEV			eSn	24	23	3.2									
SEV			Snm	24	23	6.6	0.36	0.035			8.3				
SEV			Snm			6.6	0.20		0.012			60	8.9		
LZRR	275	108	ePn	21	23	51.6									
TARU	290	283	ePn	21	23	51.9									
TARU			eSn	21	24	21.4									
SOC	315	113	ePn	21	23	55.5									
KIV	528	97	eР	21	24	22.7									
					№	82. 7	июля	. Черно	е море	, райо	н 5				
	0=	21ч 2	2мин 2	.9c,	φ=	44.19	°N, λ=	36.44°E	E , $h=5\kappa$	м, K_{Π} =	=6.8±0	0.3(4),	KD	=7.4(2)	
ANN	104	42	ePg	21	22	20.6									

											П	родол	пжени	е таблицы 5
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ANN			Pgm	21	22	21.0	0.20			0.005				
ANN			e	21	22	21.3								
ANN			eSg	21	22	32.4								
ANN			Sgm	21	22	33.3	0.20	0.009						
ANN						34.0	0.20	0.013			6.6			
SUDU	139	305	_			25.7								
SUDU			_			26.3	0.33			0.004				
SUDU						41.5								
SUDU			_			42.4	0.25	0.005						
SUDU						42.4	0.34		0.01		6.6	38	7.4	
ALU	171	289				31.5								
ALU						32.2	0.24			0.003				
ALU						51.4								
ALU						51.8	0.38	0.012						
ALU						52.0	0.20	****	0.007		7.2	35	7.4	
YAL	185	281				33.5	0.20		0.007		,		,	
YAL	100	201				55.0								
SEV	223	281	e(Sn)			4								
SEV	223	201	` ′			6.4	0.38	0.004			6.6			
SE V			Silli	21				о.оод 1. Черн	ne Mon	e naหัก				
	0-2	311 10	MIII 25	30				=34.43°1	_	-		∟0 2(1) <i>K</i> D-	=5.6(2)
ALU		354				29.3	14, 70-	-34.43 1	2, n-10	KM , IX_{11}	-5.5-	LU.2(7), KD-	-3.0(2)
ALU	10	334				29.4	0.22			0.021				
			_				0.22			0.021				
ALU			_			31.9	0.26	0.026						
ALU			_					0.036	0.046		_	12	5.0	
ALU	22	256	_			32.2	0.34		0.046		5	12	5.2	
YAL		256	e(Sg)											
SIM	52	332	e(Sg)				0.25	0.004			<i>-</i> 0			
SIM			_			42.8	0.25	0.004	0.003		5.2			
SIM	50	271				43.0	0.20		0.003					
SEV	59	271	e(Sg)				0.20		0.000					
SEV			_			45.1	0.30		0.003					
SEV		4.0				46.0	0.30	0.001			5.4			
SUDU	60	49	+iPg											
SUDU			_			44.8								
SUDU						45.4			0.007		5.6			
SUDU			Sgm					0.002				15	5.7	
								ı. Черн	-	-				
					•		PN , $\lambda =$	37.37°E	h=231		=8.5±	0.3(5)), KD=	8.4(4)
ANN	31	352	iPg					+	+	+				
ANN			Pgm			8.0	0.20			0.222				
ANN						13.0								
ANN						13.7	0.20	1.72			8.9			
GL1R	56	97				11.8								
GL1R						19.0								
KERU	106	318				19.9								
KERU			Pgm	22	35	20.0	0.23			0.002				

											Π	[родо:	пжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
KERU			eSg	22	35	34.6								
KERU			Sgm	22	35	35.5	0.30		0.002					
KERU			Sgm	22	35	36.2	0.23	0.003			7.1	41	7.6	
SUDU	190	280	+ePn	22	35	29.1								
SUDU			Pnm	22	35	30.9	0.20			0.006				
SUDU			iSn	22	35	51.8								
SUDU			Snm	22	35	52.1	0.39		0.028		8			
SUDU			Snm	22	35	52.5	0.38	0.015				57	8.3	
ALU	235	273	e(Pn)	22	35	34.9								
ALU			+ePn	22	35	35.9								
ALU			Pnm	22	35	36.2	0.16			0.004				
ALU			e(Sn)	22	36	0.4								
ALU			iSn	22	36	0.9								
ALU			Snm	22	36	1.1	0.25	0.016						
ALU			Snm	22	36	1.1	0.17		0.022		8.7	58	8.4	
YAL	255	268	e(Pn)	22	35	38.0								
YAL			eSn	22	36	4.9						39	8	
SIM	260	280	+ePn	22	35	37.7								
SIM			iSn			6.0								
SIM			Snm			6.2	0.25	0.011						
SIM			Snm				0.18		0.01		8.5	70	8.7	
SEV	293	270	e(Pn)											
SEV						42.3								
SEV						44.4	0.23			0.002				
SEV						13.3								
SEV						15.3	0.31	0.009						
SEV						16.3	0.30		0.015		8.2	55	8.8	
TARU	390	284				33.8								
KIV	429	98				59.4								
KIV						45.0								
KBZ	452	101			36	0.6								
NEY		108			36	1.9								
							июля	. Черно	ое мор	е, райо	н 6			
	0=	94 71	иин 2.6	c, q				2.25°E,				0.3(3),	KD=	=8.2(1)
TARU	34	41	-iPg	9	7	10.8								α=233°
TARU			eSg	9	7	16.6						25		
SEV	131	120	+iPg	9	7	25.4								
SEV			Pgm	9	7	25.9	0.12			0.003				
SEV			iSg	9	7	40.7								
SEV			Sgm	9	7	41.0	0.30		0.008		6.5			
SEV			Sgm	9		41.8	0.28	0.004				44	8.2	
ALU	177	106	e(Sn)	9	7	51.3								
ALU			(Snm)	9	7		0.31	0.018			7.3			
SUDU	218	96	eSn	9	7									
SUDU			Snm	9	7	59.4	0.25		0.008		7.2			
					N_{2}	86. 25	июля	. Черно	ое мор	е, райо	н 5			
		0=2	20ч 48л	иин	18.	4c, φ=	44.57	$^{\circ}N$, $\lambda=3$	7.44°E,	<i>h</i> =19κ	м, К	$T_{\Pi} = 7.2$	±0.3((2)

											П	[родо.	лжен	ие т	аблиц	ы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14		15	
ANN	37	344	ePg	20	48	25.9										
ANN			Pgm	20	48	26.1	0.10			0.06						
ANN						31.0										
ANN			Sgm	20	48	31.4	0.30		0.445							
ANN			_			31.5	0.10	0.391			7.6					
FEO	170	288	e(Sn)			4.2										
FEO			Snm			6.0	0.27	0.02								
FEO			Snm			6.0	0.30		0.014		7.3					
SUDU	197	281	eSn	20	49	10.2										
SUDU			Snm	20	49	11.0	0.55	0.006								
SUDU			Snm	20	49	11.0	0.48		0.007		6.7					
SEV	298	271	e(Sn)	20	49	32.6										
							0 авгус	ста. Воз	вможно	, райо	н 4					
SUDU						59.5										
SUDU			eSg			0.7										
SUDU			Sgm			1.1	0.19	0.012								
SUDU			Sgm			1.5	0.2		0.018							
							•	Нижн						_,		
							<i>45.59</i> °	N , $\lambda = 3$	7. <i>68°E,</i>	$h=10\kappa$	и, $K_{\rm I}$	$_{\Pi}$ =7.8=	±0.6(2	2)		
ANN	83	199	_			18.6										
ANN			_			19.2	0.40			0.013						
ANN			_			28.9										
ANN			-			29.5	0.30		0.122							
ANN			_			29.7	0.50	0.218			8.4					
SUDU	224	249	eSn			4.5										
SUDU			Snm			4.8	0.31	**	0.003	J	7.2					
0	17 5	_	17.3				-	а. Чері	_	_			. 7.5	(5)		
							= 34.23	$5^{\circ}E, h=1$	ГЭКМ, К	$\Pi = /.9 \pm$	0.2(3), KL)=/.3	(3), 🛮	/1w=2.8	Y
YAL	8	269	-iPg			30.2						24	7			
YAL	24	2.1	iSg			32.5						24	7			
ALU	24	31	-iPg			32.5	0.17			0.082						
ALU			Pgm			33.3 36.0	0.17			0.082						
ALU			eSg				0.26	0.295			7.6					
ALU ALU			Sgm			36.7 37.7	0.26	0.385	0.34		7.6	35	7.4			
	16	279	Sgm				0.30		0.54			33	7.4			
SEV SEV	40	219	ePg Pgm			35.6 36.8	0.19			0.005						
SEV			eSg			42.1	0.19			0.003						
SEV			Sgm			43.3	0.17	0.03								
SEV			Sgm			43.7	0.17	0.03	0.048		7.0	37	7.0			
SIM	52	350	ePg			36.7	0.10		0.070		1.9	31	1.)			
SIM	24	550	Pgm			38.2	0.23			0.01						
SIM			eSg			43.7	0.23			0.01						
SIM			Sgm			46.1	0.23		0.021			27	6.9			
SUDU	73	54	+ePg			40.7	0.23		0.021			21	0.7			
SUDU	13	J T	Pgm			40.7	0.16			0.025						
SUDU			eSg			50.4	0.10			0.023						
2000			USE	1 /	J	55.7										

											П	родол	тжеі	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SUDU			Sgm	17	5	50.6	0.19	0.021						
SUDU			Sgm	17	5	51.3	0.20		0.076		8.1	38	7.5	
									ное мој					
	0 = 2	2ч 14	¹ мин 56	í.8c,	φ=	44.48	3°N, λ=	= <i>34.27</i> °.	E, h=13	κ м, K_{Π}	=6.1	$\pm 0.3(3)$), KI	D=5.9(5)
YAL	9	276	-ePg	22	14	59.5								
YAL				22		1.9						12	5.7	
ALU	25	26	ePg	22	15	2.1								
ALU			Pgm			2.2	0.17			0.01				
ALU			eSg			5.4								
ALU			Sgm			5.7	0.30		0.032					
ALU			Sgm			6.0	0.26	0.048			5.7	16	5.8	
SEV	47	280	e(Pg)			5.8								
SEV			Pgm			7.2	0.28			0.001				
SEV			_			11.7								
SEV						13.8	0.25	0.006	0.003					
SEV			-			13.7	0.13		0.007		6.4	15	6.1	
SIM	54	348	_			13.1								
SIM			-			13.5	0.40		0.01					
SUDU	73	53	e(Pg)				0.46							
SUDU			_			10.1	0.16			0.003				
SUDU						19.7	0.27		0.007					
SUDU			_			20.0	0.27	0.002	0.007					
SUDU			_			20.0	0.17	0.002	0.000		6.2	10	<i>6</i> 1	
SUDU			Sgiii			20.6	0.20	ra Uan	0.008 ное мој	na naŭ	6.2	19	6.1	
	0-3	2 1	6									0.4(2)	vr	0=4.3(1)
YAL		290				9.7	<i>I</i> v , ∧−	34.31 E	$\mathbf{z}, n-100$	КМ, М∏-	− 4 .9⊐	=0.4(2)	, KL	7-4.5(1)
YAL	13	290	_			11.9						6	4.3	
ALU	27	17	_			15.5						U	₹.5	
ALU	21	1 /	_			15.7	0.22	0.009	0.006		4.5			
SEV	51	283	_			22.6	0.22	0.007	0.000		1.5			
SEV	0.1	203	_			23.1	0.14		0.002		5.3			
22.			25					га. Чер	ное мој	ре, рай				
	0=2	3ч 14	¹ мин 34				-	_	_	-		±0.1(2). <i>KI</i>	D=5.9(2)
YAL		270	+iPg				11,70	<i>U</i> //.20	2, 10	7077, 1211		-0.1(-	,, 111	2.2(-)
YAL			_			39.6						13	5.8	
ALU	23	26												
ALU	-					39.8	0.16			0.006				
ALU			_			43.2								
ALU						43.4	0.19	0.026			5.5			
ALU			_			43.5	0.27		0.018			17	5.9	
SEV	48	279	-			49.7								
SEV			_			50.8	0.17		0.003		5.7			
			-	J	№ 9	3. 20	август	га. Чер	ное мој	ре, рай	іон 2			
	0 = 2	3ч 16	бмин 17	.4c,	φ=	44.48	3°N, λ=	=34.26°	E, h=16	κ м, K_{Π}	=4.7	±0.1(2), KI	D=4.5(1)
YAL	8	277	-iPg	23	16	20.7								
YAL			eSg	23	16	23.0						7		

```
Продолжение таблицы 5.
                                                         11
             3
                       5 6
                               7
                                     8
                                                   10
                                                                    13 | 14
                   eSg 23 16 26.5
ALU
         25
             28
                   Sgm 23 16 27.3
                                    0.20
                                          0.009
ALU
                                                                4.6
SEV
         47 280
                  e(Sg) 23 16 32.5
                  Sgm 23 16 34.4
                                                  0.001
SEV
                                    0.16
                                                                4.7
                         № 94. 21 августа. Черное море, район 2
        0=0ч 27мин 26.7c, \varphi=44.47°N, \lambda=34.26°E, h=16км, K_{\Pi}=4.9\pm0.3(2), KD=5.7(1)
                   -ePg 0 27 30.1
YAL
          9 284
                        0 27 32.5
YAL
                   eSg
                                                                     13 5.7
ALU
         26
            27
                  (eSg)
                        0 27 36.2
ALU
                   Sgm
                        0 27 36.7
                                    0.36
                                           0.015
ALU
                        0 27 37.7
                                    0.30
                                                  0.015
                                                                4.5
                   Sgm
SEV
         47 282
                  (eSg)
                        0 27 42.3
SUDU
         75
            52
                  (eSg)
                        0 27 50.4
SUDU
                   Sgm
                        0 27 50.9
                                    0.17
                                          0.002
SUDU
                                                  0.003
                   Sgm
                        0 27 51.2 0.17
                                                                5.1
                         № 95. 21 августа. Черное море, район 2
        0=2ч 46мин 56.0с, \varphi=44.46°N, \lambda=34.27°E, h=14км, K_{\Pi}=5.4\pm0.1(3), KD=6.0(1)
                  +iPg 2 46 59.2
YAL
         10 290
                        2 47
YAL
                   eSg
                               1.4
                        2 47
                                                                     14
YAL
                                                                           6
                    iSg
                               1.5
                        2 47
ALU
         27
             24
                   iSg
                                5.2
                        2 47
ALU
                   Sgm
                                5.3
                                    0.25
                                           0.032
                                                                5.4
                                                  0.022
ALU
                   Sgm
                        2 47
                               5.4
                                    0.30
SEV
         48 283
                   eSg
                        2 47
                              11.8
SEV
                   Sgm
                        2 47
                              12.4
                                    0.25
                                           0.004
SEV
                   Sgm
                        2 47
                              12.8
                                     0.2
                                                  0.005
SUDU
         75
            51
                   eSg
                        2 47
                              19.4
SUDU
                   Sgm
                        2 47
                              20.1
                                    0.33
                                           0.001
SUDU
                   Sgm
                        2 47 20.3
                                    0.31
                                                  0.006
                                                                5.2
                         № 96. 21 августа. Черное море, район 2
        0=5ч 37мин 45.1с, \varphi=44.47°N, \lambda=34.25°E, h=16км, K_{\Pi}=6.1\pm0.1(3), KD=6.1(1)
                  -ePg 5 37 48.5
YAL
          8 286
YAL
                   iSg 5 37 50.9
ALU
         27
             29
                   eSg
                       5 37 54.6
ALU
                   Sgm
                        5 37 54.9
                                    0.30
                                                  0.054
ALU
                   Sgm
                        5 37 55.2
                                    0.25
                                           0.074
                                                                6.4
SEV
         46 282
                   eSg
                        5 38
                               1.1
SEV
                   Sgm
                        5 38
                               1.8
                                    0.17
                                           0.007
SEV
                        5 38
                               2.2
                                    0.15
                                                  0.009
                                                                6.3
                   Sgm
SUDU
                   eSg
                        5 38
                               9.0
         75
            53
SUDU
                        5 38
                               9.1
                                    0.32
                                                  0.017
                                                                6.4
                   Sgm
SUDU
                               9.5
                                    0.30
                                          0.005
                        5 38
                         № 97. 21 августа. Черное море, район 2
          0=6ч 40мин 34.5c, \varphi=44.47°N, \lambda=34.25°E, h=16км, K_{\Pi}=5.0(1), KD=4.8(1)
YAL
          8 286
                    iPg 6 40 39.5
YAL
                    iSg
                        6 40 41.6
                                                                       8
                                                                         4.8
SEV
         46 282
                 e(Sg) 6 40 51.8
```

											П	родол	тжени	не таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SEV			Sgm	6		52.1	0.22		0.002		5		<u> </u>	
			8					та. Чер		pe, pai				
	0=	7ч 7л	лин 32.				-	34.26°E,	-). <i>3(</i> 3).	KD=	5.7(1)
YAL		277	-iPg			35.8	,	,	_	,		(-//		
YAL			iSg	7		37.9						12	5.7	
ALU	25	28	iSg	7		41.6								
ALU			Sgm			41.8	0.30	0.038			5.6			
SEV	47	280	eSg			48.2								
SEV			Sgm			49.1	0.16		0.002					
SEV			Sgm			49.2	0.16	0.002			4.8			
SUDU	74	53	e(Sg)	7										
SUDU			Sgm	7			0.18	0.004						
SUDU			Sgm			56.9	0.30		0.009		5.8			
			C					та. Чер	ное мо	pe, pai	іон 2			
	0=1	84 5	8мин 4.					<i>34.27°E</i>				0.3(4)	. <i>KD</i> =	7.4(4)
YAL		284	-iPg				,		,			ر.)	,	(.)
YAL			•			10.3						25	7.2	
ALU	26	27	-			10.6								
ALU			-			10.9	0.20			0.018				
ALU			_			14.1								
ALU			_			14.3	0.30	0.114						
ALU			_			15.8	0.20		0.115		6.8	28	6.9	
SEV	47	282	e(Pg)											
SEV						14.2	0.27			0.002				
SEV			_			19.9								
SEV			_			20.5	0.17	0.01						
SEV						20.8	0.17		0.013		6.6	36	7.8	
SIM	55	349			58	8.8								
SIM			e(Sg)	18	58	21.1								
SIM			Sgm	18	58	22.4	0.40	0.013			5.9			
SIM			Sgm	18	58	26.7	0.25		0.008			40	7.6	
SUDU	75	52	ePg	18	58	18.4								
SUDU						18.5	0.17			0.005				
SUDU			_			28.1								
SUDU			Sgm	18	58	28.2	0.19	0.006						
SUDU						30.0	0.20		0.02		6.9	40	7.6	
				Ŋ	№ 10	00. 21	авгус	ста. Чер	ное мо	pe, pa	йон 2			
	0 = 1	9ч 26	бмин 44	.2c,	, φ=	44.45	5°N, λ=	=34.30°	E, $h = 13$	$\kappa_{\mathcal{M}}$, K_{Γ}	_I =5.3=	±0.2(2), KD=	=4.3(1)
YAL	12	291	-ePg	19	26	47.6								
YAL			iSg	19	26	50						6	4.3	
ALU	27	19	eSg	19	26	53.6								
ALU			Sgm	19	26	54.1	0.20	0.013			5.1			
SEV	50	284	e(Sg)	19	26	59.8								
SEV			Sgm	19	26	59.9	0.10		0.002		5.5			
SEV			Sgm	19	27	0.0	0.11	0.001						
				Ŋ	№ 10	01. 21	авгус	ста. Чер	ное мо	pe, pa	йон 2			
	0=1	'9ч 5.	9мин 12	2.10	ζ, φ	=44.4	4°N, λ	$=34.32^{\circ}$	EE, h=9i	км, K_{Π}	$=5.1\pm$	0.1(2)	, KD=	4.6(1)

```
Продолжение таблицы 5.
                                                         11
             3
                        5 6
                                                   10
                                                               12 | 13 | 14
                   ePg 19 59
YAL
         14 293
                              15.0
                   iSg 19 59 17.1
                                                                      7
                                                                         4.6
YAL
                   iSg 19 59 20.9
ALU
         28 15
                                                  0.014
ALU
                  Sgm 19 59 21.3
                                    0.36
                  Sgm 19 59 21.5
                                          0.023
                                                               5.1
ALU
                                    0.31
         52 284
                  e(Sg) 19 59 28.1
SEV
                  Sgm 19 59 28.2
SEV
                                    0.19
                                          0.002
SEV
                  Sgm 19 59 29.1
                                    0.16
                                                  0.002
                                                               5.1
                         № 102. 25 августа. Черное море, район 2
       0=114 54мин 12.8c, \varphi=44.49°N, \lambda=34.29°E, h=14\kappaM, K_{\Pi}=5.2\pm0.3(2), KD=5.7(1)
YAL
         11 270
                  -ePg 11 54 16.0
YAL
                   iSg 11 54 18.3
                                                                     11 5.7
ALU
         23
             24
                   eSg 11 54 21.1
ALU
                  Sgm 11 54 21.3
                                    0.27
                                           0.036
                                                               5.5
                                                  0.036
ALU
                  Sgm 11 54 22.8
                                    0.27
\,SEV\,
         49 279
                  e(Sg) 11 54 28.3
                  Sgm 11 54 28.6
\,SEV\,
                                    0.25
                                                  0.002
SEV
                  Sgm 11 54 29.5
                                    0.28
                                          0.003
                         № 103. 25 августа. Черное море, район 5
             0=19ч 21мин 29.5с, \phi=44.60°N, \lambda=37.44°E, h=19км, K_{\Pi}=7.2\pm0.2(3)
                  +iPg 19 21 36.4
ANN
         33 343
                  Pgm 19 21 36.7
                                                          0.06
ANN
                                    0.30
ANN
                   eSg 19 21 41.1
ANN
                  Sgm 19 21 41.7
                                    0.30
                                           0.447
                                                               7.5
SUDU
        195 280
                  e(Sn) 19 22 21.0
SUDU
                  Snm 19 22 21.2
                                    0.33
                                                  0.004
                                                               6.9
SUDU
                  Snm 19 22 23.4
                                    0.36
                                           0.002
                  e(Sn) 19 22 43.6
SEV
        298 270
SEV
                  Snm 19 22 43.9
                                    0.23
                                           0.002
                                                               7.3
SEV
                  Snm 19 22 43.9
                                    0.28
                                                  0.002
                         № 104. 28 августа. Черное море, район 5
             0=9ч 59мин 14.5с, \phi=44.65°N, \lambda=37.22°E, h=16км, K_{\Pi}=8.0\pm0.1(3)
                  +iPg 9 59 20.2
ANN
         27
ANN
                  Pgm
                        9 59 20.5
                                    0.20
                                                        0.069
                        9 59 24.1
ANN
                   eSg
ANN
                  Sgm
                        9 59 24.2
                                    0.20
                                           1.124
                                                               7.9
KERU
         95 321
                  e(Pg)
                        9 59 27.1
                                                        0.004
KERU
                  Pgm
                        9 59 27.2
                                    0.17
SUDU
        177 280
                   eSn 10
                           0
SUDU
                            0
                               4.2
                                                  0.014
                                                               8.1
                  Snm 10
                                    0.27
SUDU
                            0
                                           0.006
                  Snm 10
                               4.4
                                    0.26
YAL
        243 267
                   eSn 10
                           0 16.7
SEV
        280 269
                  e(Sn) 10
                           0 25.4
SEV
                  Snm 10
                           0 30.2
                                    0.28
                                           0.005
                                                               7.9
                                                  0.004
SEV
                  Snm 10 0 30.5
                                    0.26
                         № 105. 5 сентября. Черное море, район 1
```

											П	родо.	лжеі	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
TARU	92	19	ePg	1	48	56.8								
TARU			eSg	1	49	8.0								
SEV	121	92	eSg	1	49	16.3								
SEV			Sgm	1	49	16.8	0.23	0.03						
SEV			Sgm	1	49	16.8	0.30		0.024		8.2			
YAL	159	94	eSn	1	49	24.9								
SIM	160	75	eSn	1	49	24.1								
SIM			Snm	1	49	25.3	0.5	0.068						
SIM			Snm	1	49	25.3	0.43		0.066		8.1			
ALU	178	86	eSn	1	49	29.7								
ALU			Snm	1	49	32.3	0.31		0.0.34					
ALU			Snm	1	49	33.4	0.22	0.03			8.2			
SUDU	227	81	e(Sn)	1	49	41.7								
SUDU			Snm	1	49	43.0	0.39	0.008	0.022		7.9	49	8.1	
				J	6 10)6. 7 d	ентяб	ря. Чер	оное мо	pe, pai	йон 5	5		
	0 = 0)y 34	мин 25.). <i>KE</i>	0=7.4(1)
ANN	60		iPg		•	36.3	,		,			0.0(-)	,,	(-)
ANN			Pgm			36.5	0.20			0.018				
ANN			iSg			43.3								
ANN			Sgm			43.7	0.20	0.235	0.083		7.7			
SUDU	135	284	ePg			49.1		0.200	******					
SUDU			_			49.3	0.34			0.004				
SUDU			eSg		35									
SUDU			Sgm		35		0.45	0.005						
SUDU			Sgm		35	7.0	0.34		0.006		6.2	35	7.4	
YAL	199	267	e(Sn)			19.2	0.0.		0.000		0.2		,	
SEV		269	e(Sn)			27.9								
			()				сентяб	бря. Че	рное м	ope, pa	йон	3		
	0 = 3	у 16	мин 54.). <i>KE</i>	0=6.3(2)
ALU		258	e(Pg)			59.9	11,77		.,	011, 1111	0.7	-0.0(0)	,, 112	0.0(2)
ALU		200	Pgm		17	1.1	0.19			0.025				
ALU			eSg		17	3.6	0.17			0.020				
ALU			Sgm		17	4.1	0.20	0.074			6.3			
ALU			Sgm		17	4.5	0.23	0.07.	0.081		0.5	16	5.8	
SUDU	32	54	-iPg		17	1.0	0.20		0.001			10		
SUDU	-		Pgm		17	1.2	0.20			0.015				
SUDU			eSg			5.8	0.20			0.010				
SUDU			Sgm		17	6.4	0.33	0.043						
SUDU			Sgm		17	6.6	0.39	0.0.5	0.195		7.1	25	6.7	
YAL	48	237	eSg		17	10.0			*****					
SEV		256	e			11.7								
SEV			eSg			19.5								
SEV			Sgm			20.0	0.17	0.003						
SEV			Sgm			20.8	0.20	2.000	0.004		6.6			
			Sem	,				тября.		, район				
	0 = 0)y 53:	мин 49	3 <i>c</i>				_	_	-		0.4(3). <i>KT</i>	0=5.4(3)
ALU	10					52.3	-1, 70	2 1.32 L	., ., 1/1	w,, 1111	2.74	······································	,, 112	3.7(3)
1120	10	37	ıı g	J	23	52.5		50						

1												П	родо	лже	ние т	габлиц	цы 5
ALU	1	2	3	4	5	6	7	8	9	10	11		r –				1 -
ALU	ALU		1	Pgm	0		52.5	0.16	1		0.048						
ALU Sgm 0 53 55.1 0.16 0.074 5.9 YAL 19 224 -Pep 0 53 54.5 YAL cSg 0 53 55.9 0.17 0.056 11 5.1 YAL cSg 0 53 55.9 0.17 0.056 11 5.1 YAL cSg 0 53 57.8 9 5.1 SEV SIDU 62 68g 0 54 7.0 SUDU 62 60 cPg 0 54 0.1 SUDU Pgm 0 54 0.6 0.14 0.003 SUDU Sgm 0 54 8.7 0.16 0.002 6.6 SUDU Sgm 0 54 8.7 0.16 0.001 6.6 SUDU Sgm 0 54 8.7 0.16 0.002 1 6.6 SUDU Sgm 0 54 8.7 0.16 0.002 1 6.6 SUDU Sgm 0 54 8.7 0.16 0.004 17 5.9 **No 109.18 certafops.** Vephoe mope, paion 5 0=11 **1 13 man 2.6c, φ=44.62 °N, λ=37.28 °E, h=25κ, K K _{II} =7.9±0.2(4), KD=8.3(2) ANN Pgm 11 13 9.9 0.20 0.123 ANN Sgm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU 8.3 280 ePn 11 13 29.8 0.25 0.008 SUDU 8.3 11 13 14.9 0.20 SUDU 8.3 280 ePn 11 13 29.8 0.25 0.008 SUDU 8.3 11 13 14.9 0.20 SUDU 8.3 11 14 13 50.4 0.34 0.009 SUDU 8.3 11 14 5.2 SUDU 9.3 11 15 5.5 SUDU 9	ALU			_													
ALU Sgm 0 53 55.9 0.17 0.056 11 5.1 YAL 19 224 -ePg 0 53 54.5 YAL eSg 0 53 57.8 9 5.1 SEV Sgm 0 54 7.7 0.23 0.002 5.3 SUDU 62 60 ePg 0 54 0.1 SUDU eSg 0 54 8.2 SUDU eSg 0 54 8.5 0.17 0.021 6.6 SUDU Sgm 0 54 8.7 0.16 0.004 17 5.9 No 109. 18 certafopa. Черное море, район 5 0=11* 13mun 2 6c, φ=44.62* λ, ≥37.28*E, h=25κμ, K _Π =7.9±0.2(4), KD=8.3(2) ANN Sgm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU SIDU ES 11 13 49.9 SUDU ES 11 14 5.2 SIM SEV ES 11 14 5.2 SIM SEV ES 11 14 5.2 SIM SEV ES 11 14 5.1 SEV ES 11 14 14.0 0.19 0.005 7.7 SEV ES 11 14 14.0 SEV ES 11 14 14.0 0.19 0.005 7.7 SEV ES 11 14 15.1 SEV ES 23 57 10.8 SEV ES 23 57 10	ALU			_				0.16		0.074		5.9					
YAL	ALU			_				0.17	0.056				11	5.	1		
YAL SEV SEV SEV SEV SEW SEW SEW SEW		19	224	_													
SEV Sgm 0 54 7.7 0.23 0.002 5.3 SUDU 62 60 ePg 0 54 0.1 SUDU cSg 0 54 8.2 SUDU Sgm 0 54 8.5 0.17 0.021 6.6 SUDU Sgm 0 54 8.5 0.17 0.021 6.6 SUDU Sgm 0 54 8.7 0.16 0.004 17 5.9 **Ne 109. 18 certrafpa. Черное море, район 5 0=11 u 13мии 2.6c, φ=44.62°N, λ=37.28°E, h=25κм, K _Π =7.9±0.2(4), KD=8.3(2) ANN 30 5 iPg 11 13 9.5 ANN 6Sg 11 13 14.2 ANN 8gm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU 8nm 11 13 49.9 SUDU eSn 11 13 49.9 SUDU cSm 11 13 49.9 SUDU cSm 11 13 49.9 SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 c(Pn) 11 13 38.4 cSn 11 14 5.2 SIM Snm 11 14 5.2 SEV Snm 11 14 13.1 SEV Snm 11 14 13.0 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.0 0.00 0.005 46 8.4 **Ne 110.20 certrafpa. Черное море, район 1 0=23u 56мия 51.2c, φ=44.33°N, λ=32.94°E, h=27κм, K _Π =6.9±0.2(3), KD=7.5(3) SEV Sgm 23 57 1.18 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8)	YAL			_									9	5.	1		
SEV	SEV	51	262	_													
SUDU	SEV			Sgm			7.7	0.23		0.002		5.3					
SUDU SUDU SUDU SUDU SUDU SUDU SUDU SUDU	SUDU	62	60	_		54	0.1										
SUDU Sgm 0 54 8.2 SUDU Sgm 0 54 8.5 SUDU Sgm 0 54 8.5 SUDU Sgm 0 54 8.5 SUDU Sgm 0 54 8.7 0.16 0.004 Sgm 0 54 8.7 0.16 0.004 No 109. 18 сентября. Черное море, район 5 $0=11u\ 13muh\ 2.6c$, φ=44.62°N, λ=37.28°E, h=25κм, K_{Π} =7.9±0.2(4), KD =8.3(2) ANN 30 5 iPg 11 13 9.5 ANN esg 11 13 14.2 ANN esg 11 13 14.4 ANN Sgm 11 13 14.4 O.20 0.488 ANN Sgm 11 13 14.7 O.20 0.302 8.1 SUDU 183 280 ePn 11 13 29.6 SUDU eSn 11 13 49.9 SUDU eSn 11 13 49.9 SUDU eSn 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM SEV Som 11 14 5.2 SIM SEV Pnm 11 13 42.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV Snm 11 15 53 e(Sg 23 57 1.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 6.9	SUDU			Pgm	0	54	0.6	0.14			0.003						
SUDU Sgm 0 54 8.5 0.17 0.021 6.6 Sgm 0 54 8.7 0.16 0.004 17 5.9 N≥ 109. 18 centra6ps. Черное море, paion 5 0=11 u 13 мин 2.6c, φ=44.62°N, λ=37.28°E, h=25κм, K _{II} =7.9±0.2(4), KD=8.3(2) ANN 30 5 iPg 11 13 9.5 ANN eSg 11 13 14.2 ANN Sgm 11 13 14.7 0.20 0.488 ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU 183 280 ePn 11 13 29.6 SUDU e i1 13 49.9 SUDU e i1 13 49.9 SUDU e sn 11 13 49.9 SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 14 5.2 SIM 248 268 e(Pn) 11 13 38.4 yAL 248 268 e(Pn) 11 13 42.7 SEV eSn 11 14 45.2 SIM 253 280 e(Sn) 11 14 5.2 SIM 256 270 ePn 11 13 43.2 SEV eNn 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.20 centra6ps. Черное море, paioн 1 0=23u 56мин 51.2c, φ=44.33°N, λ=32.94°E, h=27κм, K _{II} =6.9±0.2(3), KD=7.5(3) SEV Pgm 23 57 3.1 0.23 0.002 SEV Sgm 23 57 10.8 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SUDU						8.2										
SUDU $\frac{S_{gm}}{N^{\circ}}$ 10 5 4 8.7 0.16 0.004 17 5.9 $\frac{N^{\circ}}{N^{\circ}}$ 109. 18 centra6pa. $\frac{N^{\circ}}{N^{\circ}}$ 109. 13 0.012 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 0.02 0.123 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 14.2 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 14.4 0.20 0.488 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 14.7 0.20 0.302 8.1 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 14.9 0.20 0.302 8.1 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 14.9 0.20 0.008 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 14.9 0.20 0.008 $\frac{N^{\circ}}{N^{\circ}}$ 11 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14				_				0.17		0.021		6.6					
No. 109. 18 centragps. Vertical Hermogra	SUDU			_					0.004					5.	9		
0=11ν 13 μun 2.6c, $φ=44.62^\circ N$, $λ=37.28^\circ E$, $h=25\kappa M$, $K_\Pi=7.9\pm0.2(4)$, $KD=8.3(2)$ ANN 30 5 iPg 11 13 9.5 Pgm 11 13 9.9 0.20 0.123 ANN Sgm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU 183 280 ePn 11 13 29.6 SUDU eI 11 13 49.9 SUDU eSn 11 13 49.9 SUDU SuDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM 256 E(Pn) 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV EN Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 14.0 0.19 0.005 7.7 SEV EN 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV EN 11 14 14.0 0.19 0.005 7.7 SEV SEV EN 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 0.19 0.005 7.7 SEV 3 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.23 0.002 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEM 15 53 e(Sg) 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3				C						ное м	ope, pa	йон	5				
ANN 30 5 iPg 11 13 9.5 ANN esg 11 13 14.2 ANN Sgm 11 13 14.4 ANN Sgm 11 13 14.4 ANN Sgm 11 13 14.7 0.20 0.488 ANN Sgm 11 13 129.6 ANN Sgm 11 13 29.6 BUDU e 11 13 29.8 BUDU e 11 13 49.2 BUDU Snm 11 13 50.4 0.34 0.009 BUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 BIM 253 280 e(Sn) 11 14 5.2 BIM 253 280 e(Sn) 11 14 5.2 BIM 258 EV Pnm 11 13 42.7 Pnm 11 13 42.7 Pnm 11 13 42.7 Pnm 11 13 42.7 Pnm 11 14 14.0 0.19 0.002 BEV eSn 11 14 13.1 BEV Snm 11 14 14.0 0.19 0.005 7.7 BEV SEV Snm 11 14 14.0 0.19 0.005 7.7 BIV SEV SIM 51.2c, φ=44.33°N, λ=32.94°E, h=27κμ, K _{II} =6.9±0.2(3), KD=7.5(3) BEV eSg 23 57 10.8 BEV eSg 23 57 10.8 BEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) BEV SGM 25 57 11.8 0.25 0.006 7.2 35 (7.8) BEV SGM 25 57 12.5 BIM 115 53 e(Sg) 23 57 25.1 BIM Sgm 23 57 25.4 0.38 0.006 6.9 BIM 15 Sgm 23 57 25.4 0.38 0.006 6.9 BIM 15 Sgm 23 57 25.4 0.38 0.006 6.9 BIM 15 Sgm 23 57 25.4 0.38 0.006 6.9 BIM 15 Sgm 23 57 25.4 0.38 0.006 6.9 BIM 15 Sgm 23 57 25.4 0.38 0.006 6.9		0 = 1	1ч 13	Вмин 2.										t), K	D=8.3	3(2)	
ANN	ANN							,	ĺ		, 11		,	/ /		()	
ANN Sgm 11 13 14.2 ANN Sgm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU 183 280 ePn 11 13 29.6 SUDU eI 1 13 49.9 SUDU eSn 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM Snm 11 14 5.3 0.25 0.011 7.9 SEV 286 270 ePn 11 13 42.7 Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV SEV ESN 11 14 13.1 SEV SIM Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 10.0 ccentra6pa. Черное море, paion 1 0=234 56μμπ 51.2c, φ=44.33°N, λ=32.94°E, h=27κμ, K _{II} =6.9±0.2(3), KD=7.5(3) SEV eSg 23 57 10.8 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 21.5 SIM Sgm 23 57 21.5 SIM Sgm 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	ANN			_				0.20			0.123						
ANN Sgm 11 13 14.4 0.20 0.488 ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU Pnm 11 13 29.6 SUDU e1 13 49.2 SUDU SUDU eSn 11 13 49.9 SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM 258 W Snm 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SIM 11 14 14.2 0.20 0.005 46 8.4 **No 110 20 certrafpa.** Uephoe mope, paion 1 0=23u 56μμη 51.2c, φ=44.33°N, λ=32.94°E, h=27κμ, K _Π =6.9±0.2(3), KD=7.5(3) SEV SEV Sgm 23 57 10.8 SEV Sgm 23 57 11.8 0.23 0.006 SEV Sgm 23 57 11.8 0.25 0.006 YAL 98 79 e(Sg) 23 57 21.5 SIM 15 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3				_													
ANN Sgm 11 13 14.7 0.20 0.302 8.1 SUDU 183 280 ePn 11 13 29.6 Pnm 11 13 29.8 0.25 0.008 SUDU eSn 11 13 49.9 SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM 268 270 ePn 11 13 43.2 0.19 0.002 SEV 286 270 ePn 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV SEV Snm 11 14 14.0 0.19 0.005 7.7 SIN 11 14 14.2 0.20 0.005 7.7 SIN 11 14 14.2 0.20 0.005 46 8.4 No 110 20 cehtaβps. Черное море, район 1 0=23 4 56 μμ 51.2 c, φ = 44.33 °N, λ = 32.94 °E, h = 27 κμ, K _Π = 6.9 ± 0.2(3), KD = 7.5(3) SEV SEV Sgm 23 57 11.8 0.23 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SIM 15 53 e(Sg) 23 57 25.1 SIM 15 53 e(Sg) 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3				_				0.20	0.488								
SUDU 183 280 ePn 11 13 29.6 SUDU e 11 13 49.2 SUDU eSn 11 13 49.9 SUDU SUDU Snm 11 13 50.4 0.34 0.009 SUDU SNm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 YAL eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM SEV 286 270 ePn 11 13 42.7 Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SSEV Snm 11 14 14.0 0.19 0.005 7.7 SSEV Snm 11 14 14.0 0.19 0.005 7.7 SSEV Snm 11 14 14.2 0.20 0.005 46 8.4 N₂ 110. 20 сентября. Черное море, район 1 0=23				_						0.302		8.1					
SUDU Pnm 11 13 29.8 0.25 0.008 SUDU e 11 13 49.2 SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 YAL eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM SEV 286 270 ePn 11 13 42.7 Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.2 0.20 0.005 7.7 SEV SNm 11 14 14.2 0.20 0.005 46 8.4 № 110. 20 сентября. Черное море, район 1 0=23 ч 56мин 51.2c, φ=44.33°N, λ=32.94°E, h=27κм, K _Π =6.9±0.2(3), KD=7.5(3) SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3		183	280	_													
SUDU eSn 11 13 49.2 SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 YAL eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM SEV 286 270 ePn 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV SEV Snm 11 14 14.2 0.20 0.005 46 8.4 No 110. 20 centra6pa. Черное море, район 1 0=23 ч 56 мин 51.2 с, φ=44.33 °N, λ=32.94 °E, h=27 κм, K _Π =6.9±0.2(3), KD=7.5(3) SEV 63 68 ePg 23 57 2.9 Pgm 23 57 3.1 0.23 0.002 SEV SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV Sgm 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SUDU							0.25			0.008						
SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 253 280 e(Sn) 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.3 0.25 0.011 7.9 SEV Snm 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 N№ 110. 20 сентября. Черное море, район 1 0=234 56мин 51.2c, φ=44.33°N, λ=32.94°E, h=27κм, K _Π =6.9±0.2(3), KD=7.5(3) SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SUDU																
SUDU Snm 11 13 50.4 0.34 0.009 SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 eSn 11 14 5.2 253 280 e(Sn) 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.3 0.25 0.011 7.9 SEV Snm 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 N№ 110. 20 сентября. Черное море, район 1 0=234 56мин 51.2c, φ=44.33°N, λ=32.94°E, h=27κм, K _Π =6.9±0.2(3), KD=7.5(3) SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SUDU			eSn	11	13	49.9										
SUDU Snm 11 13 50.5 0.19 0.016 8 53 8.2 YAL 248 268 e(Pn) 11 13 38.4 YAL eSn 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM Snm 11 14 5.3 0.25 0.011 7.9 SEV 286 270 ePn 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 № 110. 20 сентября. Черное море, район 1 0=234 56мин 51.2c, φ=44.33°N, λ=32.94°E, h=27κм, K _Π =6.9±0.2(3), KD=7.5(3) SEV 63 68 ePg 23 57 2.9 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 25.1 SIM 15 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SUDU			Snm	11	13	50.4	0.34	0.009								
SIM 253 280 e(Sn) 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM SEV 286 270 ePn 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV SIM SIM 11 14 14.0 0.19 0.005 7.7 SEV SIM 11 14 14.2 0.20 0.005 46 8.4 **No 110. 20 centra fops. ** Hephoe mope, pa hon 1** 0=23 4 56 μμ 51.2 c, φ=44.33 °N, λ=32.94 °E, h=27 κμ, K _Π =6.9±0.2(3), KD=7.5(3) SEV 63 68 ePg 23 57 2.9 SEV eSg 23 57 10.8 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM 15 53 e(Sg) 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SUDU							0.19		0.016		8	53	8.	2		
SIM 253 280 e(Sn) 11 14 5.2 SIM 253 280 e(Sn) 11 14 5.2 SIM SEV 286 270 ePn 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV SIM SIM 11 14 14.0 0.19 0.005 7.7 SEV SIM 11 14 14.2 0.20 0.005 46 8.4 **No 110. 20 centra fops. ** Hephoe mope, pa hon 1** 0=23 4 56 μμ 51.2 c, φ=44.33 °N, λ=32.94 °E, h=27 κμ, K _Π =6.9±0.2(3), KD=7.5(3) SEV 63 68 ePg 23 57 2.9 SEV eSg 23 57 10.8 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM 15 53 e(Sg) 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	YAL	248	268	e(Pn)	11	13	38.4										
SIM Snm 11 14 5.3 0.25 0.011 7.9 SEV 286 270 ePn 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 No 110. 20 сентября. Черное море, район 1 0=23ч 56мин 51.2c, φ=44.33°N, λ=32.94°E, h=27κм, K _Π =6.9±0.2(3), KD=7.5(3) SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 25.1 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 12.3	YAL			eSn	11	14	5.2										
SEV 286 270 ePn 11 13 42.7 SEV Pnm 11 13 43.2 0.19 0.002 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 No 110. 20 сентября. Черное море, район 1 $0=23456$ $Muh 51.2c$, $φ=44.33$ °N, $λ=32.94$ °E, $h=27$ κ M , $K_{\Pi}=6.9\pm0.2(3)$, $KD=7.5(3)$ SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 12.3	SIM	253	280	e(Sn)	11	14	5.2										
SEV Pnm 11 13 43.2 0.19 0.002 SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 N_2 110. 20 сентября. Черное море, район 1 $0=23 \circ 56 \text{мин} 51.2 \text{c}$, $\varphi=44.33 \circ \text{N}$, $\lambda=32.94 \circ \text{E}$, $h=27 \kappa \text{M}$, $K_{\Pi}=6.9\pm0.2(3)$, $KD=7.5(3)$ SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 12.3	SIM			Snm	11	14	5.3	0.25		0.011		7.9					
SEV eSn 11 14 13.1 SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 No 110. 20 сентября. Черное море, район 1 $0=23$ 4 56 μ 6 ePg 23 57 2.9 SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 12.3	SEV	286	270	ePn	11	13	42.7										
SEV Snm 11 14 14.0 0.19 0.005 7.7 SEV Snm 11 14 14.2 0.20 0.005 46 8.4 N 110. 20 сентября. Черное море, район 1 $0=23$ 4 56 μ 4 51.2 6, $\phi=44.33$ °N, $\lambda=32.94$ °E, $\lambda=27$ 6, $\lambda=6.9\pm0.2$ 3, $\lambda=7.5$ 3 SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) SEV $\lambda=6.9$ 6 $\lambda=6.9$ 7 $\lambda=6.9$ 7 $\lambda=6.9$ 8 $\lambda=6.9$ 9 $\lambda=6.9$	SEV			Pnm	11	13	43.2	0.19			0.002						
SEV Snm 11 14 14.2 0.20 0.005 46 8.4 N_{2} 110. 20 сентября. Черное море, район 1 $0=23456$ мин 51.2 c , $\varphi=44.33$ °N, $\lambda=32.94$ °E, $h=27\kappa$ M, $K_{\Pi}=6.9\pm0.2(3)$, $KD=7.5(3)$ SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 12.3	SEV			eSn	11	14	13.1										
№ 110. 20 сентября. Черное море, район 1 $0=234\ 56$ мин $51.2c$, $\phi=44.33^\circ N$, $\lambda=32.94^\circ E$, $h=27$ км, $K_\Pi=6.9\pm0.2(3)$, $KD=7.5(3)$ SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 12.3	SEV			Snm	11	14	14.0	0.19		0.005		7.7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SEV			Snm	11	14	14.2	0.20	0.005				46	8.	4		
SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3																	
SEV 63 68 ePg 23 57 2.9 SEV Pgm 23 57 3.1 0.23 0.002 SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3		0 = 2.	3ч 56.	мин 51	.2c,	φ=	44.33	°N, λ=	32.94°E	h=27	κ м, K_{Π}	=6.9	±0.20	3), K	D=7.	5(3)	
SEV eSg 23 57 10.8 SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SEV																
SEV Sgm 23 57 11.4 0.30 0.006 SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SEV			Pgm	23	57	3.1	0.23			0.002						
SEV Sgm 23 57 11.8 0.25 0.006 7.2 35 (7.8) YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 Graph 120 344 +iPg 23 57 12.3	SEV			eSg	23	57	10.8										
YAL 98 79 e(Sg) 23 57 21.5 SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SEV			Sgm	23	57	11.4	0.30		0.006							
SIM 115 53 e(Sg) 23 57 25.1 SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	SEV							0.25	0.006			7.2	35	(7.8))		
SIM Sgm 23 57 25.4 0.38 0.006 6.9 TARU 120 344 +iPg 23 57 12.3	YAL	98	79	e(Sg)	23	57	21.5										
TARU 120 344 +iPg 23 57 12.3	SIM	115	53														
	SIM			Sgm	23	57	25.4	0.38		0.006		6.9					
TARU eSg 23 57 27.6 36 (7.8)	TARU	120	344	_													
	TARU			eSg	23	57	27.6						36	(7.8))		

											П	родо.	пже	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SUDU	174	68	+iPg	23	57	21.1								
SUDU			Pgm	23	57	21.2	0.27			0.005				
SUDU			eSg	23	57	41.7								
SUDU			e	23	57	43.1								
SUDU			Sgm	23	57	43.5	0.30	0.002	0.006		6.7	28	6.9)
								ря. Чер						
							3°N, λ=	=34.34°.	E, h=25	κ м, K_{Π}	=7.4	±0.3(5), K	D=7.8(3)
YAL	27	327	_			37.8								
YAL			_			42.4								
ALU	45	6	_			40.4								
ALU			_			40.5	0.22			0.027				
ALU			_			46.7								
ALU			_			47.1	0.30	0.139			7.6			
ALU		•				48.6	0.22		0.058			44	7.8	•
SEV	60	299	_			41.7								
SEV						42.3	0.13			0.016				
SEV						49.8	0.21	0.021			6.0			
SEV			_			50.4	0.31	0.021	0.013		6.9	41	0.1	
SEV		246	_			50.4	0.25		0.012			41	8.1	
SIM	//	346	e(Pg)											
SIM			e(Sg)				0.10	0.014			7.2			
SIM						55.6	0.18	0.014	0.005		7.3			
SIM	05	27				55.9	0.15		0.005					
SUDU SUDU	85	37	+ePg			48.5	0.13			0.005				
SUDU			eSg			58	0.13			0.003				
SUDU			_			58.9	0.28	0.015						
SUDU			_			58.1	0.27	0.015	0.032		7.2	36	7.4	L
FEO	117	45	eSg			6.3	0.27		0.032		,	50	,	
FEO	11,		Sgm			6.6	0.28	0.028			7.8			
FEO			Sgm			6.6	0.22		0.013					
			8					гября. 1		район	1			
	0	=14 <i>u</i>	37мин	<i>15</i> .	5c,	$\varphi = 44$.50°N,	$\lambda = 33.9$	01°E, h=	=15км, 1	$K_{\Pi}=4$	4.8(1)I	KD=	·5.7(1)
YAL	18	76	+iPg	14	37	20.3								
YAL			eSg	14	37	23.7								
SEV	23	297	ePg	14	37	20.9								
SEV			Pgm	14	37	21.2	0.33			0.004				
SEV						24.7								
SEV			Sgm	14	37	25.2	0.33		0.01		4.8			
SEV			Sgm			25.6	0.52	0.018				12	5.7	'
								ря. Чер						1/2)
	_					•	=42.37	'°N, λ=3	35.86°E	$h=23\kappa$:м, К	$\Pi = 8.1$	±0.3	(3)
DIKM		212	ePg			0.4								
HAVZ	152	185	iPn			6.4								
HAVZ	200	1.50				23.4								
ERBA	202	158				12.2								
ERBA			ıSn	18	40	35.0								

											П	родо	лжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ALU	282	336	eSn	18	40	52.1								
ALU			Snm	18	40	52.4	0.27	0.024			8.5			
ALU			Snm	18	40	53.8	0.48		0.027					
SUDU	288	346	eSn	18	40	54.2								
SUDU			Snm	18	40	56.2	0.45	0.007						
SUDU			Snm	18	40	56.2	0.25		0.012		8			
SEV	299	325	eSn	18	40	53.9								
SEV			Snm	18	40	54.0	0.42	0.009			7.8			
SEV			Snm	18	40	54.6	0.21		0.003					
				N	<u>11</u>	4. 18	октяб	ря. Чер	ное мо	pe, pa	йон	9		
	0 = 1.	5ч 34)	иин 54	.0c,	φ=	42.74	'°N, λ=	35.11°E	$E, h=5\kappa$	и, Кп=	10.1	$\pm 0.3(3)$	5), KL	9.8(5)
				Λ	1SH	7=3.76	(5), ML	0=3.2(6)	Mc=3	2. <i>5, M</i> и	y=3.7	7		
BZK	126	227	Pn	15	35	16.6								
BZK			Sn	15	35	33								
YAL	210	339	e(Pn)	15	35	27.2								
YAL			i	15	35	29.8								
YAL			eSn	15	35	51.8						90		
ALU	224	346	+ePn	15	35	28.9								
ALU			i	15	35	30.0								
ALU			Pnm				0.27			0.11				
ALU			iSn	15	35	56.3								MSH=4.0
ALU			Snm				0.30	0.413	0.197		10.1	110	9.7	MD=3.2
SEV	232	331				29.5								
SEV						31.6								
SEV			Pnm				0.25			0.016				
SEV						56.0								
SEV			Snm				0.25	0.068	0.027		9.8			MSH=3.3
SEV	240	2.50	Snm				0.31		0.074			120	10.2	MD=3.3
SUDU	240	358	+iPn											
SUDU						32.1	0.20			0.050				
SUDU			Pnm				0.28			0.052				
SUDU						58.6	0.45	0.001) (GII 2.5
SUDU			Snm				0.45	0.231	0.221		10.2	100	0.6	MSH=3.7
SUDU	255	_	Snm				0.50		0.321		10.2	108	9.6	MD=3.2
FEO	255	5	-ePn				0.20			0.10				
FEO			Pnm				0.30			0.19				
FEO						0.6	0.20	0.205			10.6			MCII_2 0
FEO			Snm			3.5	0.30	0.285	0.175		10.6		10.1	MSH=3.9
FEO	250	242	Snm e(Pn)			6.6	0.23		0.175			90	10.1	MD=3
SIM SIM	239	342	Pnm				0.25			0.087				
SIM			eSn			2.6	0.35			0.087				
SIM			Snm			4.1	0.35	0.107			9.7			MSH-2.5
SIM			Snm			7.8	0.35	0.10/	0.127		7.1	115	9.6	MSH=3.5 MD=3.3
KERU	306	20				39.3	0.33		0.12/			113	7.0	MID-3.3
KERU	500	20	Pnm				0.2			0.032				
KERU						15.1	0.2			0.032				
KEKU			COII	13	50	13.1								

											Пт	одо	лжен	ие т	аблиці	ы 5
1	2	3	4	5	6	7	8	9	10	11	12	13	14		15	
KERU			(Snm)	15	36	17.1	0.48		0.022			110		N	MD=3.2	
KIV	627	75	eP	15	36	17.8										
					№ 1	15. 1	ноябр	я. Черн	юе мор	е, рай	он 2					
		0=	21ч 35л	иин	<i>50</i> .	4c, φ=	$=44.50^{\circ}$	$^{\circ}N$, $\lambda=3$	4.33°E,	h=23k	см, K_{Γ}	=5.6	± 0.30	(3)		
YAL	14	264				55.3							,			
YAL			_			58.7										
ALU	21	16	eSg			0.0										
ALU			Sgm			0.6	0.20	0.037			6					
ALU			Sgm			0.6	0.53		0.043							
SEV	52	276	eSg			7.9										
SEV			Sgm			9.0	0.39	0.007								
SEV			Sgm			9.0	0.30		0.006		5.6					
SUDU	69	50				12.4			*****							
SUDU	0,	20				13.3	0.20	0.002								
SUDU						13.3	0.28	0.002	0.005		5.2					
БСВС			ogiii					я. Черн		e naŭ						
		0-	2111 121					N , $\lambda = 3$				_ 5 3	±0.20	(3)		
		0	214 7 27	иин	J.J.	υς, ψ	-44.50	14, 7.	7.32 E,	n-23K	\mathcal{M} , \mathbf{M}_{1}	1-5.5	±0.2(3)		
VAI	12	264	+iPg	21	12	2.0										
YAL	13	264	_			3.9										
YAL	21	10	eSg			7.3										
ALU	21	18	eSg			8.6	0.27	0.02								
ALU			Sgm Sgm			9.2	0.27	0.02	0.024		5 5					
ALU	<i>E</i> 1	276	_			9.2	0.23		0.024		5.5					
SEV	31	276	e(Sg)				0.20	0.005								
SEV			-			17.4	0.38	0.005	0.004		<i>5</i> 2					
SEV	(0	<i>5</i> 1	-			17.4	0.30		0.004		5.3					
SUDU	69	51	e(Sg)				0.20		0.004		-					
SUDU			Sgm			21.9	0.28		0.004		5					
		0	22 55				_	я. Черн	_	_				(2)		
a====							=43.94	$^{\circ}N$, $\lambda=3$	3./9°E,	h=35k	см, К∏	$_{\rm I}=5.8$	± 0.4	(2)		
SEV		352	_			56.7										
YAL	67	25	e(Pg)													
YAL	o -	•	_			57.8										
ALU	95	30	eSg			4.1		-								
ALU			Sgm			6.8	0.39	0.007			5.4					
SUDU	142	42	_			15.6										
SUDU			Sgm				0.27			0.005						
								. Азовс								
							=37.07	$^{\circ}E$, $h=2$	5 км, $K_{\rm I}$	$_{\rm I} = 8.5 \pm$	0.2(4)	, KD	=8.80	(3), M	1w = 3.1	
KERU		245	i(Pg)	4	8	26.0										
ANN	72	164	ePg		8											
ANN			Pgm				0.30			0.206						
ANN			eSg	4	8	36.4										
ANN			Sgm		8	36.8	0.50	0.43			8.8					
ANN			Sgm	4	8	36.8	0.20		0.289							
ANN			Sgm	4	8	37.1	0.90	0.477								
FEO	142	248	e(Sg)	4	8	53.8										
								60								

											Π	[родо:	тжени	ие таблицы 5
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
FEO			Sgm	4	8	54.0	0.22	0.041						
FEO			Sgm	4	8	54.0	0.19		0.028					
SUDU	176	248	+ePn	4	8	41.0								
SUDU			Pnm	4	8	41.3	0.20			0.035				
SUDU			eSn	4	9	0.2								
SUDU			Snm	4	9	0.5	0.42	0.016						
SUDU			Snm	4	9	0.5	0.28		0.038		8.2	70	8.8	
TPSR	226	134	ePn	4	8	46.5								
TPSR			eSn	4	9	9.5								
ALU	228	247	e(Pn)	4	8	46.7								
ALU			Pnm	4	8	47.8	0.30			0.016				
ALU			eSn	4	9	10.7								
ALU			Snm	4	9	12.0	0.30		0.022					
ALU			Snm	4		14.4	0.41	0.043			8.4	65	8.6	
SIM	239	256	ePn	4	8									
SIM			e(Sn)	4		14.0								
SIM			Snm	4		14.1	0.24	0.008						
SIM			Snm	4		15.1	0.23		0.009					
LZRR	253	133	ePn	4	8	48.9								
LZRR			eSn	4	9	14.1								
YAL	256	245	ePn	4	8	50.1								
YAL			eSn	4	9	16.5								
SEV	287	249	ePn	4	8	54.4								
SEV			Pnm	4	8	54.7								
SEV			eSn	4		23.7	0.24	0.021			0.7			
SEV			Snm	4		24.4	0.34	0.031	0.02		8.7		0.0	
SEV	200	125	Snm	4		24.4	0.30		0.02			60	8.9	
SOC		135	ePn	4		56.1								
RPOR	323	127	ePn	4		58.3	10	- 7 T	C		2			
	0 1	. 26	20					ября. Ь	-	_		0 1/2	ND.	5.0(3)
A T T T							-1ν, λ=.	34.36°E	n=20K	см, ∧ ∏=	=3.0=	±0.1(3)), KD=	1 /
ALU	9	157	+iPg			25.1	0.16			0.027				α=36°
ALU			Pgm			25.3	0.16			0.037				
ALU			iSg			27.8	0.10	0.055			- 7			
ALU			Sgm			28.0	0.18	0.055	0.041		5.7		(
ALU	20	220	Sgm			28.1	0.19		0.041			18	6	
SIM	29	320	-ePg			26.5	0.15			0.000				
SIM			Pgm			26.7	0.15			0.009				
SIM			eSg Sam			30.9	n 10	0.011			(5)			
SIM			Sgm			31.1	0.18	0.011	0.004		(5)	12	5.6	
SIIDII	50	74	Sgm eSg			31.2	0.13		0.004			13	5.6	
SUDU	52	74				37.8	0.27	0.002	0.011		5 5			
SUDU SEV	50	248	Sgm eSg			40.1 39.4	0.27	0.002	0.011		5.5			
SEV	39	Z40	_			40.4	0.15		0.002		5.6			
SE V			Sgm					ря. Пр		a naës		'		
		1 22	4.5	2	J 1º .	16.77	дскаи 1031-2	ря. прі		c, panc	,n /		() KD	0.2(1)

											П	родол	іжен	ие таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
FEO	226	211	e(Sn)	21	33	44.9								
FEO			Snm	21	33	45.2	0.30	0.017						
FEO			Snm	21	33	45.2	0.27		0.009		7.9			
SUDU	254	215	ePn	21	33	23.2								
SUDU			Pnm	21	33	23.3	0.31			0.004				
SUDU			eSn	21	33	51.9								
SUDU						52.3	0.23	0.002						
SUDU			Snm	21	33	52.3	0.41		0.011		7.4	55	8.3	
SIM	294	228	eSn			0.4								
SIM			Snm			0.5	0.28	0.01			7.9			
SIM			Snm			0.5	0.30		0.006					
SEV	350	226	eSn											
SEV						13.6	0.42	0.01			7.8			
SEV						13.6	0.24		0.005					
								эя. Чер		ne, nai	іон 1			
	0 = 2	1u 52	2мин 22									+0 2(5) <i>KI</i>	0=8.2(3)
SEV	59	4			•	33.8	11, 70	-	+	T	0.0.	±0.2(5)	<i>)</i> , ILL	$\alpha=154^{\circ}$
SEV	3)	7	_			36.3	0.36			0.056				W 134
SEV			_			42.0	0.50			0.050				
SEV			_			43.5	0.29	0.058						
SEV			_			43.5	0.48	0.038	0.132		7.8	60	8.4	
YAL	68	38	-			35.3	0.40		0.132		7.0	00	0.4	
	00	30	_			43.9			-	-				
YAL	97	20	_											
ALU	91	39	e(Pg)				0.42			0.012				
ALU			_			42.7	0.42			0.013				
ALU			e(Sg)				0.22	0.067			7.6			
ALU			-			52.0	0.33	0.067	0.050		7.6	47	0	
ALU	111	20	-			56.5	0.45		0.058			47	8	
SIM	111	20	e(Pg)											
SIM			e(Sg)				0.50	0.04						
SIM			Sgm			2.4	0.50	0.04	0.022		0			
SIM	146	40	Sgm			2.4	0.28		0.022		8			
SUDU	146	48				48.4	0.25			0.012				
SUDU			_			49.9	0.25			0.012				
SUDU			eSg			6.4	0.07		0.046		0.2			
SUDU						10.5	0.27	0.020	0.046		8.3	50	0.1	
SUDU	1.70	-1	Sgm			12.9	0.55	0.029				52	8.1	
FEO	179	51	e(Sg)				0.20	0.022						
FEO						17.5	0.28	0.023						
FEO			Sgm	21		17.5	0.36		0.035		8.1			
№ 122. 6 декабря. Крым, район 1 0=8ч 25мин 55.3с, φ=44.50°N, λ=33.95°E, h=10км, K _П =5.4±0.5(1), KD=6.2(1)														
					•		N , $\lambda =$	33.95°E			=5.4±	=0.5(1)	, KD	0=6.2(1)
YAL	16	95	_			59.3			+	+				
YAL			eSg		26	2.2								
SEV	22	283	-iPg		26	0.3		-	+	-				
SEV			Pgm	8	26	0.5	0.30			0.008				
SEV			eSg	8	26	3.9								

											П	родој	тжени	е таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SEV			Sgm	8	26	4.5	0.22	0.018					-	
SEV			Sgm	8	26	4.5	0.31		0.024		5.4	16	6.2	
					N	<u>123.</u>	16 ден	сабря.	Крым,	район	2			
	0 = 9	ч 10л	иин 32.	7c,	$\varphi = 2$	44.43°	$^{\circ}N$, $\lambda=$	34.10°E	h=22k	см, K_{Π} =	=7. <i>0</i> ±	=0.2(4)	, <i>KD</i> =	7.0(3)
YAL	8	36	iPg	9	10	36.7						, ,		
YAL			iSg	9	10	39.5						19	6.6	
SEV	35	292	-iPg		10	39.8								
SEV			Pgm	9	10	40.3	0.17			0.011				
SEV			iSg	9	10	44.9								
SEV			Sgm	9	10	45.0	0.17	0.02	0.01					
SEV			Sgm	9	10	45.7	0.16		0.023		6.7	31	7.5	
ALU	37	42	e(Pg)	9	10	40.2								
ALU			iSg	9	10	45.4								
ALU			Sgm	9	10	45.6	0.27		0.072					
ALU			Sgm	9	10	45.7	0.25	0.139			7.3			
SIM	58	3	e(Pg)	9	10	43.0								
SIM			eSg	9	10	50.4								
SIM			Sgm	9	10	50.6	0.15	0.012			6.9			
SIM			Sgm	9	10	51.3	0.15		0.008					
SUDU	87	55	+ePg	9	10	48.0								
SUDU			Pgm			48.1	0.16			0.003				
SUDU			iSg			58.8								
SUDU			Sgm			59.7	0.25	0.006	0.024		7.1	28	6.9	
	№ 124. 19 декабря. Черное море, район 1													
	0 = 10	0ч 48				44.38	?°N, λ=	33.96°1	E, $h=22$	κ м, K_{Π}	=6.4	$\pm 0.3(3)$), KD=	<i>€6.9(1)</i>
YAL	20	54	e(Pg)			4.8								
YAL			iSg			8.5								
SEV	29	311	+ePg			5.7								
SEV			Pgm			5.9	0.19			0.001				
SEV			iSg			10.2								
SEV			_			10.6	0.19	0.014						
SEV	40	40				10.6	0.17		0.012		5.9	22	6.9	
ALU	49	48	e(Sg)											
ALU		10	(Sgm)				0.22	0.031			6.6			
SIM	65	12	e(Sg)				0.20		0.000					
SIM			Sgm			20.7	0.20	ng II	0.009		6.7	2		
	0 0	17	43						оное мо				VD	9.0(2)
37 4 7					•		-1ν, λ=.	04.03°E	h=35k	см, К∏=	=/. <u>/</u> ±	=U.3(2)	, KD=	δ. <i>U(2)</i>
YAL	41	256	ePg			51.5						20	0	
YAL	50	215	eSg			57.3						39	8	
SIM	39	315	ePg			54.0	0.12			0.004				
SIM			Pgm			54.5	0.13			0.004				
SIM			eSg		47	1.5	0.25	0.042			7.5			
SIM			Sgm		47 47	1.7	0.25	0.043	0.05		7.5			
SIM	77	260	Sgm		47 46	2.1	0.40		0.05					
SEV	//	268	iPg Pam			56.5 57.5	0.17			0.003				
SEV			Pgm	U	40	57.5	0.17			0.003				

											П	родо	пжен	ние таблицы 5.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SEV			iSg	0	47	5.5								
SEV			Sgm	0	47	5.6	0.13	0.006						
SEV			Sgm	0	47	7.2	0.17		0.009		6.9	39	8	
№ 126. 30 декабря. Черное море, район 1 0=13ч Змин 43.6с, ф=44.36°N, λ =33.93°E, h =7 κ м, K_{Π} =6.1 \pm 0.2(4), KD =7.0(2)														
	$\theta =$	13ч 3.					5°N, λ=	= <i>33.93</i> °.	E, $h=7$ k	см, K_Π =	=6.1±	0.2(4)	, KD	=7.0(2)
YAL	23	56	-ePg	13	3	47.5								
YAL			eSg	13	3	50.5						17	6.5	
SEV	27	317	-ePg	13	3	48.6								
SEV			_			48.9	0.27			0.011				
SEV			iSg	13	3	52.2								
SEV			Sgm	13	3	53.1	0.41	0.055			5.9			
SEV			Sgm	13	3	53.4	0.28		0.04			31	7.5	
ALU	52	49	e(Sg)	13	3	59.3								
ALU			Sgm	13	4	2.9	0.25	0.021			5.8			
ALU			Sgm	13	4	3.4	0.47		0.035					
SIM	66	15	e(Sg)	13	4	3.6								
SIM			Sgm	13	4	4.4	0.43	0.015						
SIM			Sgm	13	4	4.6	0.33		0.017		6.5			
SUDU	103	57	e	13	4	3.8								
SUDU			eSg	13	4	15.6								
SUDU			Sgm	13	4	15.8	0.52	0.007						
SUDU			Sgm	13	4	16.9	0.48		0.014		6.1			

^{* –} сбой времени

Список литературы

- 1. Цифровая сейсмическая станция SDAS. Описание и инструкция по эксплуатации. Обнинск: ГС РАН. 1998. 148 с.
- 2. Свидлова В.А. Крым / В.А. Свидлова, Г.Д. Пасынков, Б.И. Шаторный, Н.М. Козиненко // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 59–64
- 3. Свидлова В.А. Оценка представительности землетрясений Крыма по материалам цифровых станций / В.А. Свидлова, З.Н. Сыкчина, Г.Д. Пасынков // Сейсмологический бюллетень Украины за 2009 год. Севастополь: НПЦ "Экоси-Гидрофизика", 2011. С. 65 –67.
- 4. Красилов С.А. Организация процесса обработки цифровых сейсмических данных с использованием программного комплекса WSG / С.А. Красилов , М.В. Коломиец , А.П. Акимов // Современные методы обработки и интерпретации сейсмологических данных. Материалы международной сейсмологической школы, посвященной 100-летию открытия сейсмических станций «Пулково» и «Екатеринбург». Обнинск: ГС РАН, 2006. С. 77–83.
- 5. Свидлова В.А. Сейсмичность Крыма в 2011 году / В.А. Свидлова, З.Н. Сыкчина, Г.Д. Пасынков // Сейсмологический бюллетень Украины за 2011 год. Севастополь: НПЦ "Экоси-Гидрофизика", 2012. С. 6—16.
- 6. European-Mediterranean Seismological Center. http://www.emsc-csem.org/Earthquake/seismologist.php
- 7. Свидлова В.А. Сейсмичность Крыма в 2013 году // Сейсмологический бюллетень Украины за 2013 год. Севастополь: НПЦ "Экоси-Гидрофизика", 2014. С. 6 –11.
- 8. Медведев С.В. Шкала сейсмической интенсивности MSK-64 / С.В. Медведев , В. Шпонхойер , В. Карник. М.: МГК АН СССР, 1965. 11 с.

^{** -} не хватает динамического диапазона

- 9. Пустовитенко Б.Г. Об энергетической оценке землетрясений Крымско-Черноморского региона / Б.Г. Пустовитенко, В.Е. Кульчицкий // Магнитуда и энергетическая классификация землетрясений. М.: ИФЗ АН СССР, 1974. С. 113–125.
- 10. Пустовитенко Б.Г. Определение магнитуд и энергетических классов землетрясений по наблюдениям в Крымском регионе / Б.Г. Пустовитенко, Т.Г. Раутиан, В.А. Свидлова // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым-Карпаты) в 1978—1979 гг. Киев: Наук. думка, 1983. С. 126—138.
- 11. Пустовитенко Б.Г. Определение энергии землетрясений Крыма по длительности колебаний // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым-Карпаты) в 1970–1974 гг. Киев: Наук. думка, 1980. С. 34–39.

SEISMICITY OF THE CRIMEA IN 2014

Svidlova V.A., Kalinyuk I.V., Bondar M.N., Kocinenko N.M., Sicchina Z.N.

Seismology Department of S.I. Subbotin Geophysics Institute UNAS, Simferopol, Russia E-mail: seismosilver@mail.ru

The article presents the results of seismic monitoring of the Crimean-Black Sea region by the network of stations of the CFU Institute of Seismology and Geodynamics.

It provides general information about the stations and parameters of the digital seismic equipment in operation at the seismic stations. Amplitude-frequency characteristics of CSSs "Sudak" and "Alushta" are shown on the drawings.

It highlights the challenges of providing the network with equipment and gives a general description of seismicity. The Crimean network has localized 119 earthquakes of energy classes K_P =4.3–11.2. There is the map of epicenters of all events and the table of distribution of the number of earthquakes N (K_P) and energy parameters over 9 districts of the region, one of which is assismic.

The total number of earthquakes N is almost 2 times more than in the previous year 2013. Herewith, the total released seismic energy E was below the average for the previous 10 years of observations.

Comparative distribution of parameters N and E throughout the areas is shown in the figure. The highest density of earthquakes and the maximum released in their sources energy are observed in the Yalta area of the region.

The most significant earthquake in 2014 with the maximum energy class K_P =11.2, Mw=3.95 occurred at $03^h34^m28.3^s$ on 2 March and caused the shocks with I=2–3 points in three towns: Yalta, Alushta, the settlement Maliy Mayak. The shock coordinates belong to the zone of the devastating Crimean earthquake of 1927.

The article describes the features of the aftershock sequence, illustrates the migration of their epicenters. For the main shock the values of such dynamic parameters as the magnitude level of Coda waves MS, local magnitude MSH by the maximum amplitude of the transverse S-wave and moment magnitude Mw have been obtained. The table of magnitudes according to different seismological agencies is included. It provides information about the features of the seismicity of individual regions. Unusual activity of the Azov-Kuban region is observed.

Keywords: seismicity, the seismic station, epicenter, hypocenter, energy class.

СЕЙСМИЧНОСТЬ КРЫМА В 2014 ГОДУ

References

- Cifrovaya sejsmicheskaya stanciya SDAS. Opisanie i instrukciya po ehkspluatacii. Obninsk: GS RAN, 1998. – 148 s.
- Svidlova V.A. Krym / V.A. Svidlova, G.D. Pasynkov, B.I. SHatornyj, N.M. Kozinenko // Zemletryaseniya Severnoj Evrazii, 2006 god. – Obninsk: GS RAN, 2012. – S. 59–64
- Svidlova V.A. Ocenka predstavitel'nosti zemletryasenij Kryma po materialam cifrovyh stancij / V.A. Svidlova, Z.N. Sykchina, G.D. Pasynkov // Sejsmologicheskij byulleten' Ukrainy za 2009 god. Sevastopol': NPC "EHkosi-Gidrofizika", 2011. S. 65 –67.
- Krasilov S.A. Organizaciya processa obrabotki cifrovyh sejsmicheskih dannyh s ispol'zovaniem programmnogo kompleksa WSG / S.A. Krasilov , M.V. Kolomiec , A.P. Akimov // Sovremennye metody obrabotki i interpretacii sejsmologicheskih dannyh. Materialy mezhdunarodnoj sejsmologicheskoj shkoly, posvyashchennoj 100-letiyu otkrytiya sejsmicheskih stancij «Pulkovo» i «Ekaterinburg». – Obninsk: GS RAN, 2006. – S. 77–83.
- Svidlova V.A. Sejsmichnost' Kryma v 2011 godu / V.A. Svidlova, Z.N. Sykchina, G.D. Pasynkov // Sejsmologicheskij byulleten' Ukrainy za 2011 god. – Sevastopol': NPC "EHkosi-Gidrofizika", 2012. – S. 6–16
- 6. European-Mediterranean Seismological Center. http://www.emsc-csem.org/Earthquake/seismologist.php
- Svidlova V.A. Sejsmichnost' Kryma v 2013 godu // Sejsmologicheskij byulleten' Ukrainy za 2013 god. Sevastopol': NPC "EHkosi-Gidrofizika", 2014. – S. 6 –11.
- 8. Medvedev S.V. SHkala sejsmicheskoj intensivnosti MSK-64 / S.V. Medvedev , V. SHponhojer , V. Karnik. M.: MGK AN SSSR, 1965. 11 s.
- Pustovitenko B.G. Ob ehnergeticheskoj ocenke zemletryasenij Krymsko-CHernomorskogo regiona / B.G. Pustovitenko, V.E. Kul'chickij // Magnituda i ehnergeticheskaya klassifikaciya zemletryasenij. – M.: IFZ AN SSSR, 1974. – S. 113–125.
- Pustovitenko B.G. Opredelenie magnitud i ehnergeticheskih klassov zemletryasenij po nablyudeniyam v Krymskom regione / B.G. Pustovitenko, T.G. Rautian, V.A. Svidlova // Sejsmologicheskij byulleten' Zapadnoj territorial'noj zony ESSN SSSR (Krym-Karpaty) v 1978–1979 gg. – Kiev: Nauk. dumka, 1983. – S. 126–138.
- Pustovitenko B.G. Opredelenie ehnergii zemletryasenij Kryma po dlitel'nosti kolebanij // Sejsmologicheskij byulleten' Zapadnoj territorial'noj zony ESSN SSSR (Krym-Karpaty) v 1970–1974 gg. – Kiev: Nauk. dumka, 1980. – S. 34–39

Ученые записки Таврического национального университета имени В. И. Вернадского Серия «География». Том 27 (66), № 2. 2014 г. С. 70–86.

УДК 550.348.435

СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ КРЫМА 2014 ГОДА

Пустовитенко Б.Г., Эредженов Э.Э.

Отдел сейсмологии Института геофизики им. С.И. Субботина НАНУ, г. Симферополь E-mail: bpustovitenko@mail.ru

Представлены спектральные и динамические параметры очагов (M_0 , r_0 , $\Delta \sigma$, ϵ , $\eta \sigma$, $\Delta \sigma_r$, \bar{u} , Eu и Mw) 14 землетрясений Крыма с K_Π =7.2–11.2, восстановленные по 120 амплитудным спектрам продольных и поперечных сейсмических волн, зарегистрированных цифровыми региональными сейсмическими станциями. Наибольшие значения динамических параметров получены для ошутимого землетрясения 2 марта с K_Π =11.2, а наименьшие – для его слабого афтершока 6 апреля с K_Π = 7.2. Средние значения сейсмических моментов и радиусов круговой дислокации в пределах погрешностей их определения удовлетворяют средним долговременным зависимостям параметров от энергетического уровня землетрясений, полученным по аналоговым записям. Дается анализ полученных результатов.

Ключевые слова: амплитудный спектр, модель Брюна, спектральная плотность, угловая частота, сейсмический момент, радиус дислокации, сброшенное и кажущееся напряжения, подвижка по разрыву, радиационное трение.

ВВЕДЕНИЕ

Различное сочетание полей тектонических напряжений, систем разрывных структур, геологических и прочностных свойств глубинной среды в регионе и в отдельных его частях, приводит к пространственной неоднородности несущей способности среды. Это отражается на динамических параметрах отдельных землетрясений и их групп. К динамическим параметрам очага относятся: скалярный сейсмический момент M_0 , радиус круговой дислокации r_0 , сброшенное напряжение $\Delta \sigma$, величина деформации сдвига ε , кажущееся напряжение $\eta \overline{\sigma}$, величина радиационного трения $\Delta \sigma_{\rm r}$, сейсмическая энергия E_S и средняя подвижка по разрыву \overline{u} (или величина дислокации), Eu — энергия образования дислокации в очаге.

Изучая пространственные и временные особенности динамических параметров очагов землетрясений в широком диапазоне энергий за длительное время, можно надеяться получить некоторое схематическое представление о дифференциации региона по условиям в очаговых зонах. В связи с этим ежегодное определение очаговых параметров и их оперативное опубликование является актуальным для своевременного использования в задачах геодинамических исследований.

1. ИСХОДНЫЕ ДАННЫЕ

В 2014 г. региональной сетью сейсмических станций Крыма зарегистрировано 119 местных землетрясений в диапазоне энергетических классов K_{Π} =4.5÷11,2. Около 70% из них относится к слабым (K_{Π} < 7), непредставительным для региона сейсмическим событиям [1], зафиксированным только ближайшими к очаговой зоне сейсмостанциями. Для таких землетрясений основные параметры определены с

СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ КРЫМА 2014 ГОДА

меньшей надежностью и потому их записи не были привлечены для восстановления очаговых параметров. Как и в предыдущие годы для анализа выбраны все наиболее значимые представительные сейсмические события года с K_{Π} >9.5, а также более слабые толчки из района ощутимого землетрясения 2 марта с K_{Π} = 11.2 и недостаточно изученных территорий северо-западной части Крыма и Азовского моря (районы 6, 7). По такому критерию за 2014 год отобрано 14 землетрясений с энергетическими классами K_{Π} =7.2–11.2, для расчета спектральных и динамических параметров очагов. Пространственное расположение эпицентров землетрясений, для которых восстановлены очаговые параметры, даны на рисунке 1, а их основные параметры приведены в таблице 1.



Рис. 1. Карта эпицентров землетрясений Крымско-Черноморского региона за 2014 г., для которых восстановлены очаговые параметры: I – энергетический класс K_{Π} ; 2 – глубина очага; 3 – сейсмическая станции; 4 – граница районов. На врезке а представлена увеличенная карта эпицентров центральной зоны региона (районы 2–3).

Максимальное количество изученных землетрясений (7 событий), относится к Ялтинской зоне региона (район 2), три – к Азово-Кубанской (район 7) и по одному – к Алуштинской, Керченско-Анапской зоне очагов, Степному Крыму и Черноморской впадине (районы 3, 5, 6 и 9).

Таблица 1. Основные параметры землетрясений Крыма за 2014 год, для которых восстановлены динамические параметры очагов

№	Время возникновения					Ко	Глубина Энергети-			ети-	Ma	Рай-				
п/п	36	емле	емлетрясения, t_0				эпицентра				ческ	сий		ОН		
									КЛ	И	кла	сс				
	месяц	день	час	мин	сек	$\phi^{\circ}N$	$\gamma_{\circ}E$	$\delta ho^\circ, \delta \lambda^\circ$	h, κ_M	8ћ, км	Кп	8 K	Mw^*/n	δMw	MSH	
1	1	4	7	48	0.3	46.14	36.57	0.10	6	3	9.4	0.4	3.52/7	0.14	3.3	7
2	3	2	3	34	28.3	44.30	34.33	0.01	28	1	11.2	0.2	3.95/7	0.11	3.9	2
3	3	2	18	10	25.9	44.26	34.34	0.02	26	3	8.5	0.4	2,88/4	0.14		2
4	3	17	23	13	36.0	44.43	34.34	0.01	19	1	9.8	0.4	3.31/7	0.13	3.0	2
5	3	25	17	4	40.5	44.69	36.53	0.08	13	7	9.6	0.3	3.32/7	0.12	3.2	5
6	3	29	5	41	21.1	44.44	34.33	0.01	19	1	8.6	0.4	3.05/7	0.08		2
7	3	30	7	55	59.1	45.51	32.98	0.02	21	1	8.2	0.1	3.13/4	0.09		6
8	4	6	20	47	13.2	44.30	34.28	0.02	23	2	7.2	0.1	2.63/5	0.08		2
9	4	27	2	51	33.6	44.23	34.33	0.02	22	3	8.5	0.2	2.9/6	0.12		2
10	4	28	6	30	35.8	44.62	34.47	0.01	22	1	9.3	0.3	3.44/5	0.08	2.9	3
11	6	30	15	4	43.1	45.85	38.81	0.03	9	3	8.9	0.6	3.5/1			7
12	8	20	17	5	27.2	44.49	34.25	0.01	15	1	7.9	0.2	2.83/7	0.11		2
13	10	18	15	34	54.0	42.74	35.11	0.03	5	3	10.1	0.3	3.66/5	0.13	3.7	9
14	11	9	4	8	13.7	45.51	37.07	0.06	25	6	8.5	0.2	3.05/4	0.1		7

[•] Значения Мw даны по результатам настоящей работы (Табл. 3);

Для расчета амплитудных спектров и восстановления по ним динамических параметров очагов использовано 120 записей продольных (P) и поперечных (S) волн на сейсмических станциях «Алушта» (ALU), «Севастополь» (SEV), «Симферополь» (SIM), «Судак» (SUDU). Общая статистика использованного материала по каждой станции дана в таблице 2.

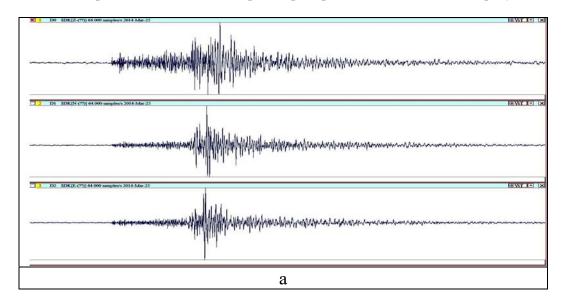
Статистика использованного материала

Таблица 2.

Сейсмическая станция	% участия	Количество спектров	Количество записо объемных волн		
			$P\left(\mathbf{Z}\right)$	S (N+E)	
«Алушта»	79	29	9	20	
"Севастополь»	79	22	_	22	
«Симферополь»	86	32	10	22	
«Судак»	93	37	11	26	

n – количество определений.

Наибольшее количество спектров получено ПО записям станиий «Симферополь» и «Судак». Процент участия этих же станций в общей оценке динамических параметров отдельных землетрясений также наибольший, соответственно 86% и 93%. Во всех случаях станционные определения очаговых параметров получены по полному вектору колебаний *S*-волны.

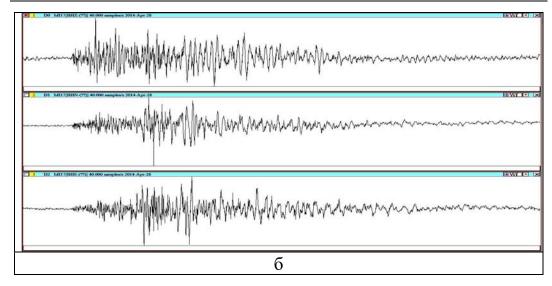
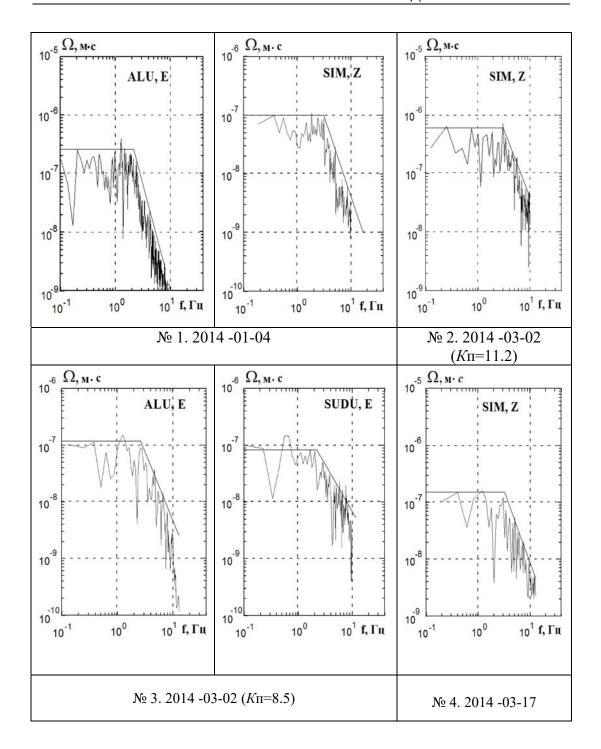

Пока не использованы для анализа записи сейсмостанций «Феодосия» и «Керчь», которые расположены в районах высокого уровня помех, соответственно, на мергелистых глинах и мшанковых известняках с пониженными прочностными свойствами и повышенным затуханием высоких частот. Сейсмические колебания от местных землетрясений на этих станциях не только осложнены микросейсмическим шумом, но и сложным образом искажены амплитудно-частотной характеристикой (АЧХ) среды, которую в настоящее время без специальных исследований корректно учесть не представляется возможным.

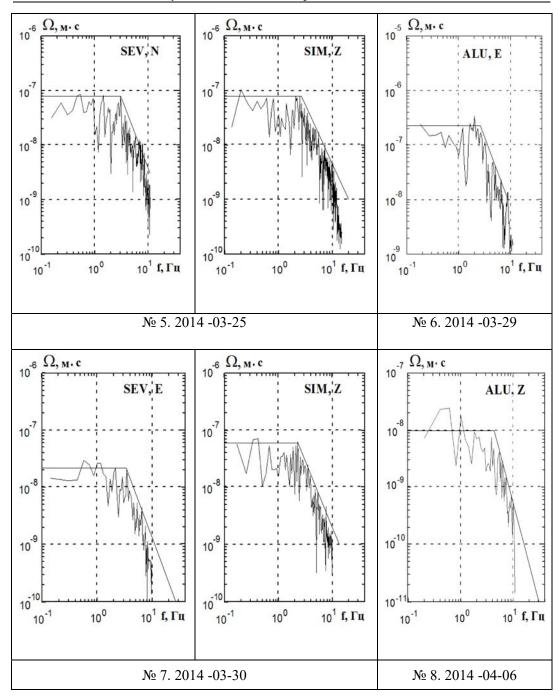
Записи сейсмостанции «Тарханкут», открытой в 2012 г. [2] также не привлечены для анализа из-за отсутствия надежных АЧХ сейсмографов и АЧХ локальных инженерно-геологических условий места расположения сейсмостанции.

На момент расчета спектров и оценки динамических параметров не были уточнены основные параметры сейсмографов сейсмостанции «Ялта» за 2014 г., в связи с этим сейсмограммы этой станции также не использованы в данной работе.

2. МЕТОДИКА ОБРАБОТКИ И ИНТЕРПРЕТАЦИЯ АМПЛИТУДНЫХ СПЕКТРОВ

Для предварительно отобранных землетрясений был проведен анализ качества сейсмограмм на сейсмических станциях с надежными амплитудно-частотными характеристиками приборов. Выбраны записи с четкими фазами объемных P и S волн, не осложненные микросейсмическим шумом с превышением полезного сигнала над фоном помех в 2 и более раза. Примеры таких записей даны на рисунке 2.


Рис. 2. Записи землетрясений 2014 г. по составляющим Z, N-S, E-W (сверху вниз): a– 25 марта с K_{Π} =9.6 (№5 по таблице 1); δ – 28 апреля с K_{Π} =9.3 (№10 по таблице 1) соответственно на станциях «Судак», Δ =123 κM и «Симферополь», Δ =46 κM .

Амплитудные спектры поперечных волн (S) во всех случаях рассчитывались по двум горизонтальным составляющим (N-S) и (E-W) и вычислялся полный вектор колебаний, а продольных (P) — по вертикальной (Z). Относительная длительность τ исследуемого участка записи принята равной интервалу времени от момента вступления S- и P-волн до времени спада их максимальных амплитуд $A_{\rm max}$ на уровень $^{1}/_{3}A_{\rm max}$ [3].

Станционные амплитудные спектры рассчитаны стандартным методом быстрого преобразования Фурье. Для интерпретации выбрана теоретическая дислокационная модели Брюна (ω^{-2}) [4], согласно которой амплитудный спектр объемной волны характеризуется тремя основными параметрами: спектральной плотностью $\Omega_0(x,f)$ в длиннопериодной части (при $f \rightarrow 0$), угловой частотой $f_0(\omega_0)$ и углом наклона $\gamma \sim -2$. Полученные амплитудные спектры записей землетрясений Крыма за 2014 г. уверенно аппроксимируются двумя прямыми: в длиннопериодной части спектра — прямой, параллельной оси частот, в области коротких периодов — наклонной прямой с угловым коэффициентом $\gamma \sim -2$ (Рис. 3), что соответствует выбранной теоретической модели.

Как было сказано выше, всего использовано 120 записей объемных волн, по которым, соответственно, рассчитано 120 амплитудных спектров. Ввиду многочисленности их невозможно представить в данной статье в полном объеме; на рисунке 3 приведены только примеры для каждого землетрясения по разным типам волн и отдельных станций регистрации, расположенных в различных районах региона и отличающихся инженерно-геологическими свойствами подстилающих пород.

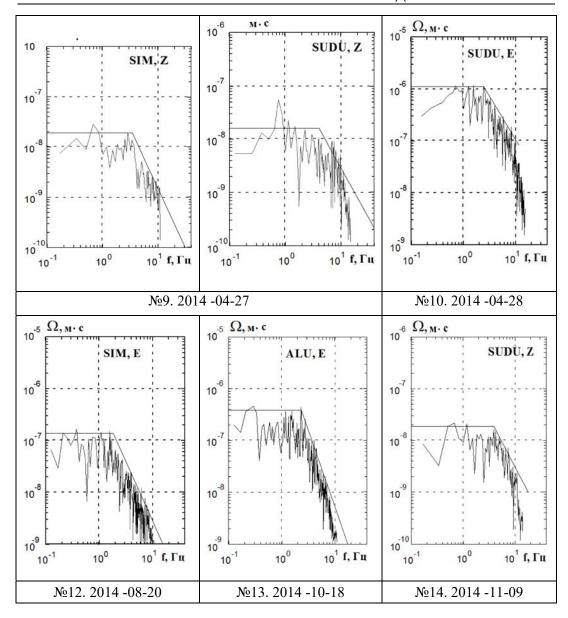


Рис. 3. Примеры амплитудных спектров объемных сейсмических волн землетрясений Крыма за 2014 г. по записям региональных цифровых сейсмостанций и их аппроксимация в рамках теоретической модели Брюна. Номера и даты землетрясений соответствуют таковым в таблице 1.

3. РАСЧЕТ ДИНАМИЧЕСКИХ ПАРАМЕТРОВ ОЧАГА

Согласно теоретической дислокационной модели Брюна [4] спектральная

плотность Ω_0 пропорциональна скалярному сейсмическому моменту M_0 , а угловая частота f_0 прямо связана с размером дислокации r_0 .

Формула для расчета M_0 по станционному спектру имеет вид:

$$M_0 = \Omega_0(4\pi\rho \cdot V^3)/R_{\theta\phi} \cdot G(\Delta, h) \cdot C(\omega) \cdot Sm(f)$$
 (1)

где Ω_0 — максимальное значение спектральной плотности при $\omega \to 0$; V — скорость распространения объемной волны; ρ — плотность пород в окрестности очага, $R_{\theta\phi}$ — направленность излучения из очага на станцию регистрации; $G(\Delta, h)$ — поправка за геометрическое расхождение; $C(\omega)$ — частотная характеристика среды под станцией, Sm(f) — поправка за неупругое затухание в мантии.

Методика учета всех этих факторов при переходе от станционного спектра к спектру источника подробно изложена в работах [3, 5, 6] и не изменилась по сравнению с предыдущими годами.

Геометрические размеры очага определялись по угловой частоте f_0 амплитудного спектра смещения. Для дислокационной модели Брюна с разрывом в виде круга, радиус дислокации r_0 вычисляется по формуле:

$$r_0 = 2.34 \frac{V_P}{2\pi f_0} \tag{2}$$

По найденным значениям сейсмического момента M_0 и размеров разрыва r_0 с использованием формул из работ [3–5, 7, 8] определены другие динамические параметры очагов: сброшенное напряжение $\Delta \sigma$, величина деформации сдвига ε , кажущееся напряжение $\eta \overline{\sigma}$, величина радиационного трения $\Delta \sigma_r$, сейсмическая энергия E_S , средняя подвижка по разрыву \overline{u} (или величина дислокации), энергия образования дислокации в очаге Eu и моментная магнитуда Mw (Табл. 2). Моментная магнитуда рассчитана по индивидуальным оценкам сейсмических моментов M_0 (выраженных в $\partial u n \cdot c m$) с использованием формулы Канамори [9]:

$$Mw = 2/3 \cdot \lg M_0 - 10.7,$$

 $Mw = 2/3 \cdot (\lg M_0 + 7) - 10.7,$

где M_0 имеет размерность $\partial u H \cdot c M$ и $H \cdot M$ в системах СГС и СИ соответственно.

Большинство динамических параметров получено по группе независимых станционных определений. Только для одного слабого сейсмического толчка (№11), произошедшего на Тарханкутском полуострове (район 6), динамические параметры рассчитаны по записям S-волны на ближайшей к очагу станции «Севастополь».

Осреднение станционных динамических параметров (кроме радиационного трения $\Delta \sigma_r$) и вычисление их стандартных отклонений проведены, как и прежде, с учетом логнормального закона распределения величин [3]. Станционные значения $\Delta \sigma_r$ получились знакопеременными, поэтому их среднее значение вычислено по

среднегеометрическим для данного очага напряжениям $\Delta \sigma$ и $\eta \overline{\sigma}$ по формуле [7]: $\Delta \sigma_r = 1/2\Delta \sigma - \eta \overline{\sigma}$. В этом случае графа в таблице 3 «стандартное отклонение» не заполнялась. Среднее значение моментной магнитуды Mw определено как среднее арифметическое с соответствующей погрешностью.

Результаты расчета станционных и средних для землетрясения динамических параметров представлены в таблице 3. Для каждой станции указаны эпицентральное расстояние Δ , κM , тип использованной волны (P, S) и составляющая записи, где (N+E) – полный вектор колебаний по N+S и E-W.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Восстановленные значения динамических параметров очагов землетрясений Крыма за 2014 год уверенно относятся к категории надежных. Преобладающее большинство из них получено по группе станций с использованием как продольных, так и поперечных волн. Количественные параметры амплитудного станционного спектра существенно зависят от энергии в очаге, направленности излучения на станцию регистрации, свойств глубинной среды на пути распространения сейсмических волн и под станцией регистрации, а также от ряда факторов, которые трудно учесть. Поэтому для надежных оценок очаговых параметров в работе использованы не только записи нескольких станций, но и разных типов волн. В осреднении очаговых параметров участвовало от четырех до семи станционных определений, что обеспечило малую величину стандартного отклонения δX , показателя степени рассеяния индивидуальных оценок.

Таблица 3. Спектральные и динамические параметры очагов землетрясений Крыма за 2014 год

Станция	Волна	Составляющая	Δ , κM	$\Omega_0 \cdot 10^{-6}$, $M \cdot C$	$\sum \! \Omega_0 \cdot 10^{-6}$, M·C	$f_0, \Gamma \psi$	M_0 · 10^{13} , H · M	$r_0, \kappa_{\mathcal{M}}$	$\Delta \sigma \cdot 10^5$, Πa	e·10-6	\vec{u} · 10^{-2} , M	ησ·10 ⁵ , <i>Πα</i>	$\Delta\sigma_{\rm r}$ 10 5 , Πa	Еи·108, Дж	Mw^*
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
№ 1	l . 4	янва	ря;	t ₀ =7 <i>u</i>	48 м	ин 0.	3 c; φ	= 46	.14°,	$\lambda = 36$. 57°;	h =	6 км;	<i>K</i> п=9.	4
ALU	P	Z	234	0.041		3.2	9.43	0.58	2.1	7.0	0.3	1.59	-0.55	3.3	3.25
ALU	S	N+E	234		0.41	2.1	20.4	0.53	5.9	19.7	0.76	0.74	2.2	20.1	3.48
SEV	S	N+E	287		0.39	2.1	23.7	0.53	6.9	23.0	0.89	0.63	2.8	27.3	3.52
SIM	P	Z	233	0.1		3.25	11.4	0.57	2.66	8.9	0.37	1.31	0.02	5.1	3.31
SIM	S	N+E	233		1.41	2.1	34.9	0.53	10.1	33.8	1.31	0.43	4.63	58.9	3.63
SUDU	P	Z	186	0.22		3.1	40.2	0.60	8.11	27.0	1.18	0.37	3.68	54.2	3.67
SUDU	S	N+E	186		1.44	2.0	56.8	0.56	14.2	47.5	1.93	0.26	6.86	135.0	3.77
	Х-	средн	нее з	начен	ие		23.65	0.56	5.95	19.87	0.81	0.63	2.35	23.52	3.52
ст	анд	цартн	oe o	гклоне	ение		0.11	0.01	0.11	0.11	0.11	0.11		0.22	0.14

											Про	жпор	ение т	аблиі	цы 3
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
No∶	2. 2	март	a. to	=3 4 3	4 мин	28.3	c; φ =	44.30	ο, λ =	= 34. 3	3°; h	= 28	км; К 1	ı =11.	2
ALU	P	Z	43	1.5		2.75		0.89		27.7		3.51	0.64	187.0	
ALU	S	N+E	43		3.5	1.85	60.3	0.76		19.6	1.1	7.88	-4.94	59.2	3.79
SEV	S	N+E	59		1.95	1.9	64.3	0.74	5.8	22.7	1.23	7.39	-3.98	73.0	3.81
SIM	P	Z	75	0.75		2.9	78.9	0.85	5.7	18.9	1.16	6.03	-3.19	74.5	3.87
SIM	S	N+E	75		8.15	1.6	164.0	0.88	10.3	34.5	2.22	2.91	2.26	282.0	4.08
SUDU	P	Z	84	0.5		2.8	115.0	0.88	7.4	24.8	1.59	4.13	-3.99	143.0	3.98
SUDU	S	N+E	84		4.5	1.8	198.0	0.79	17.8	59.4	3.4	2.4	6.51	588.0	4.13
	X-	среді	нее з	начен	ие		106.38	0.83	8.05	27.48	1.65	4.47	-0.44	146.2	3.95
С	тан,	дартн	oe o	тклон	ение		0.08	0.01	0.07	0.07	0.07	0.08		0.14	0.11
No :	3. 2	март	a. to	=18 <i>u</i>	10 ми	н 25.	9 c; φ =	44.2	26°, λ	= 34.	34°;	h=2	6 км; 1	Кп = 8. :	5
ALU	P	Z	47	0.01		5.0	0.94	0.49	0.35	1.16	0.04	2.01	-1.84	0.05	2.59
ALU	S	N+E	47		0.15	2.9	2.69	0.49	1.01	3.38	0.12	0.7	-0.19	0.46	2.89
SIM	S	N+E	79		0.15	2.5	3.13	0.57	0.76	2.52	0.1	0.6	-0.22	0.39	2.93
SUDU	S	N+E	87		0.12	2.8	5.48	0.51	1.86	6.19	0.23	0.35	0.58	1.69	3.1
	Х-	среді	нее з	вначен	ие		2.57	0.51				0.74	-0.32	0.35	2.88
С	тан,	дартн	oe o	тклон	ение		0.16	0.02	0.15	0.15	0.16	0.16		0.32	0.14
№ 4	. 17	мар	га. <i>t</i> (=23 u	13 мі	ін 36	.0 c; φ	= 44.4	43°, 7		. 34°;	h = 1	19 км;	$K_{\Pi} = 9$.8
ALU	P	Z	28	0.15		3.6	7.06	0.65	1.14	3.81	0.18	4.25	-3.68	1.35	3.17
ALU	S	N+E	28		0.7	2.3	6.3	0.58	1.39	4.64	0.2	4.76	-4.06	1.46	3.14
SEV	S	N+E	54		0.4	2.85	9.05	0.47	3.8	12.7	0.43		-1.41	5.74	3.24
SIM	P	Z	60	0.14		3.9	9.09	0.6	1.87	6.23	0.27	3.3	-2.37		3.24
SIM	S	N+E	60		1.64	2.1	20.2	0.64	3.4		0.53	1.48	-0.21	11.5	3.47
SUDU	P	Z	73	0.1		3.8	15.7	0.61	3.0		0.44		-0.41	7.84	3.4
SUDU	S	N+E	73		0.8	2.15	24.0	0.62			0.65		0.92	17.4	
	Х-	среді	нее з	вначен	ие		11.58	0.59		8.1		2.59	-1.38	4.69	
С	тан,	дартн	oe o	тклон	ение		0.09	0.02	0.09	0.09	0.08	0.09		0.16	0.13
	5. 25		та. 1	t ₀ =17 u	ı 4 ми		5 c; φ =	44.6	9°, λ	= 36.					
ALU	P	Z		0.012		3.5	4.21	0.67		2.1	0.1	5.05	-4.73	0.44	3.02
ALU	S	N+E			0.15	2.3	10.0	0.58		7.4	0.31	2.1	-1.0		3.27
SEV	S	N+E	227		0.11	2.6	9.86	0.52		10.5	0.39		-0.58	5.15	3.27
SIM	P	Z		0.08		3.2	15.9	0.73		6.0	0.32	-	-0.43	4.82	3.4
SIM	S	N+E			0.32	2.05	12.2	0.65		6.3	0.30		-0.79	3.87	3.33
SUDU	P			0.06		4.0	15.3	0.58		11.3	0.48		0.31		3.39
SUDU	S	N+E	123		0.6	2.2	29.3	0.61	5.65	18.8	0.84	0.73	-2.1	27.6	3.58
	Х-	среді	нее з	начен	ие								-0.65	4.53	
С	тан,	дартн	oe o	тклон	ение		0.1	0.02	0.11	0.11	0.11	0.1		0.2	0.12
		_			41 ми	н 21.	<u>1 c; φ =</u>								
ALU	P	Z		0.06		4.0		_					-0.63		
ALU		N+E	28		0.46	2.5		_					-0.06		_
SEV	S	N+E			0.16	2.3	3.55						-0.36	0.47	2.97
SIM	P	Z	59	0.1		3.5	6.61	$0.\overline{67}$	0.98	3.28	0.16	0.4	-0.09	1.08	3.15

											Про,	долж	сение т	абли	цы 3
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SIM	S	N+E	59		0.43	2.15	5.43	0.62	0.98	3.26	0.15	0.49	-0.003	0.89	3.09
SUDU	P	Z	73	0.03		4.0	4.65	0.58	1.03	3.44	0.15	0.57	-0.06	0.8	3.05
SUDU	S	N+E	73		0.24	2.25	7.1	0.60	1.74	4.9	0.21	0.38	0.36	1.74	3.17
	X-	среді	нее з	начен	ие		4.68	0.59	1	3.25	0.14	0.57	-0.07	0.76	3.05
C	тан,	дартн	oe o	тклон	ение		0.05	0.01	0.05	0.04	0.04	0.05		0.09	0.08
№	7. 30	0 мар	та. 1	t ₀ =7 <i>u</i>	55 ми	н 59.	1 c; φ =	= 45.5	51°, λ	= 32.	98°;	h=2	1 км; І		
SEV	S	N+E	121		0.07	2.9	3.35	0.46	1.48	4.95	0.17	0.4	0.3	0.83	2.95
SIM	P	Z	108	0.06		3.0	6.7	0.78	0.63	2.1	0.12	0.2	0.11	0.7	3.15
SIM	S	N+E	108		0.4	2.0	8.53	0.67	1.24	4.13	0.2	0.16	0.46	1.76	3.22
SUDU	S	N+E	173		0.12	2.25	8.2	0.6	1.7	5.65	0.25	0.16	0.68	2.32	3.21
	Х-	среді	нее з	вначен	ие		6.29	0.62	1.18	3.95	0.18	0.21	0.38	1.24	3.13
C	тан,	дартн	oe o	тклон	ение		0.09	0.05	0.1	0.1	0.07	0.09	0.17	0.13	0.09
No 3	8.6	апре.	1я. <i>t</i>	₀ =20 4	47 мі	ин 13							23 км; 1	$K_{\Pi}=7$.	2
ALU	P	Z	44	0.01		4.2	0.68	0.55	0.18	0.58	0.02	0.25	-0.16	0.02	2.49
ALU	S	N+E	44		0.075	2.8	0.98	0.48	0.39	1.3	0.04	0.17	0.02	0.06	2.6
SEV	S	N+E	55		0.04	2.4	0.94	0.56	0.24	0.79	0.03	0.18	-0.06	0.04	2.6
SUDU	P	Z	87	0.008		4.0	1.49	0.58	0.33	1.11	0.05	0.11	0.05	0.08	2.72
SUDU	S	N+E	87		0.045	2.3	1.61	0.58	0.35	1.18	0.05	0.1	0.07	0.09	2.74
	X-	среді	нее з	начен	ие		1.08			0.95			-0.01	0.05	2.63
C	тан,	дартн	oe o	тклон	ение		0.07	0.02	0.06	0.06	0.08	0.07		0.12	0.08
No 9	9. 27	7 апр	еля.	$t_0 = 2 u$	51 мі	ин 33		= 44 .	23°, 7	$\lambda = 34$.33°;	h=2	22 км; 1		
ALU	P	Z	51	0.02		5.0	1.52	0.47	0.66		0.07	1.25	-0.9	0.17	2.72
ALU	S	N+E	51		0.15	2.75		0.49	0.82	2.7	0.09	0.87	-0.46	0.3	2.83
SIM	P	Z	82	0.02		4.0	1.75		0.39		0.06		-0.88	0.11	2.77
SIM	S	N+E	82		0.25	2.85	4.19		1.76	5.9		0.45	0.43	1.23	
SUDU	P	Z		0.018		5.0	3.44		1.49	5.0		0.55	0.2	0.86	
SUDU	S	N+E	90		0.14	2.8	5.12		2.04			0.37	0.65	1.74	_
	Х-	среді	нее з	вначен	ие		2.75		1.02	3.4		0.69	-0.18	0.47	2.9
_		· 1		тклон			0.09	0.01		0.11		0.09		0.2	0.12
				. <i>t</i> ₀ =6									22 км;		
SEV	S	N+E	63		0.64					10.2				8.69	
SIM	P	Z	46	0.39		3.8	20.4			13.0			1.42	13.2	
SIM	S	N+E			1.56	2.1	16.6			8.75			0.63	6.84	
SUDU	P	Z	51	0.1		4.2	11.4			9.76			0.53	5.56	
SUDU	S	N+E	51		1.4	2.2				19.6					3.59
	Х-	среді	нее з	начен	ие								1.17		
_		· 1		тклон									0.13	0.13	
				$t_0 = 15$									9 км; К		
SEV		N+E			0.16					13.1		0.23		14.9	
					ч 5 м							_	15 км;		
ALU	P	Z	24	0.02	0.15	5.1				1.86				0.11	
ALU		N+E			0.15		1.7			3.06			0.06	0.26	
SEV	S	N+E Z		0.05	0.1	3.15	1.92 2.79			3.6 1.91			0.19	0.35	
SIM	Р									() !	111 /10	111 /11	0.46		1 7 (1

											Прод	долж	кение т	аблиг	цы 3
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SIM	S	N+E	52		0.2	2.5	2.13	0.54	0.6	2.02	0.08	0.31	-0.01	0.21	2.82
SUDU	P	Z	73	0.01		5.05	1.55	0.46	0.69	2.31	0.08	0.43	-0.08	0.18	2.73
SUDU	S	N+E	73		0.21	3.0	6.22	0.45	3.05	10.2	0.33	0.11	1.42	3.2	3.13
	X-	сред	нее з	начен	ие		2.16	0.48	0.88	2.93	0.1	0.34	0.1	0.32	2.83
С	тан,	дартн	oe o	тклон	ение		0.09	0.02	0.1	0.1	0.09	0.09		0.18	0.11
№ 13	№ 13. 18 октября. t ₀ =15 ч 34 мин 54.0 с; ϕ = 42.74°, λ = 35.11°; h = 5 км; K													$K_{\Pi} = 1$	0.1
SEV	S	N+E	232		0.3	2.05	14.8	0.55	4.0	13.3	0.53	4.05	-2.1	9.82	3.38
SIM	P	Z	255	0.3		3.3	37.6	0.56	9.15	30.5	1.25	1.59	2.9	57.3	3.65
SIM	S	N+E	255		1.2	2.0	32.5	0.56	8.15	27.5	1.1	1.84	2.2	44.1	3.61
SUDU	P	Z	240	0.25		3.1	58.9	0.6	11.9	39.5	1.73	1.02	4.9	117.0	3.78
SUDU	S	N+E	240		1.5	2.1	76.3	0.53	22.2	73.9	2.86	0.78	10.3	282.0	3.86
	X-	сред	нее з	начен	ие		38.19	0.56	9.53	31.81	1.29	1.57	3.2	60.62	3.66
С	тан,	дартн	oe o	тклон	ение		0.12	0.01	0.12	0.12	0.12	0.12		0.24	0.13
№	14.	9 ноя	бря	. t ₀ =4	ч 8 ми	н 13.	.7 c; φ =	= 45.5	51°, λ	L = 37.	07°;	h=2	5 км; К	л = 8. 5	5
ALU	S	N+E	228		0.04	3.3	2.44	0.41	1.59	5.3	0.16	0.78	0.02	0.65	2.86
SEV	S	N+E	287		0.04	3.1	4.53	0.43	2.45	8.2	0.26	0.42	0.8	1.85	3.04
SUDU	P	Z	176	0.02		4.1	7.29	0.57	1.74	5.8	0.24	0.26	0.61	2.12	3.18
SUDU	S	N+E	176		0.08	3.0	5.57	0.45	2.73	9.1	0.3	0.34	1.03	2.54	3.1
	X-	сред	нее з	начен	ие		4.6	0.46	2.07	6.92	0.23	0.41	0.63	1.6	3.05
С	тан,	дартн	oe o	тклон	ение		0.1	0.03	0.06	0.06	0.06	0.1	0.4	0.13	0.1

Наилучшая сходимость станционных определений получена для радиуса круговой дислокации ($\delta r_0 = 0.01 \div 0.05$), величина которого в явном виде не зависит от направленности излучения энергии из очага и условий среды под станцией регистрации. Стандартные отклонения по другим параметрам для большинства землетрясений менее $\delta X < 0.1$. Исключение составляют только очаговые параметры двух одинаковых по энергии сейсмических событий (K_{Π} =8.5): 2 марта (№3) и 9 ноября (№13), для которых степень рассеяния индивидуальных определений оказалась наибольшей: δX =0.12÷0.32. Уверенно определены средние значения моментных магнитуд Mw с погрешностью не выше ± 0.14 или округленно ± 0.1 . Для магнитудных оценок это очень высокая точность.

Наибольшие значения динамических параметров (M_0 , r_0 , $\Delta \sigma$, ϵ , $\eta \overline{\sigma}$, u, Eu и Mw) получены для очага ощутимого землетрясения 2 марта с K_Π =11.2, произошедшего в центральной части региона (район 2) на глубине h = 28 κM (№2), а наименьшие — для его слабого афтершока 6 апреля с K_Π = 7.2 (№8). При этом отметим, что радиационное трение $\Delta \sigma$ для всех исследованных очагов зоны ощутимого землетрясения 2 марта имело отрицательное значение, указывая на сложное скольжение разрыва в очаге за счет неравномерного распределения прочностных свойств глубинной среды в данной очаговой зоне. Во всем диапазоне энергий величина сброшенных напряжений не превысила $\Delta \sigma$ = $10^6 \Pi a$ ($10 \ \delta ap$), а кажущихся напряжений $10^6 \ \delta ap$ 0.

Предварительные оценки станционных определений по данным за 2014 год показали, что динамические параметры, восстановленные по станциям «Алушта» и

«Севастополь» примерно в 2–3 раза ниже значений по записям станции «Судак», а по станции «Симферополь» — результаты близки к средним значениям по группе станций. В дальнейшем предполагается на статистически значимом материале установить являются ли станционные отклонения систематическими для всех очаговых зон и глубин очагов для введения соответствующих поправок.

Проведем сравнение полученных в 2014 г. динамических параметров очагов со средними их долговременными величинами, установленными по аналоговым записям [3, 10] (Рис. 4). Сравнение, как и в предыдущие годы [11–15], проведено только для сейсмического момента M_0 , и радиуса круговой дислокации r_0 , поскольку они являются главными, определяемыми непосредственно по спектрам записей сейсмических колебаний, а остальные параметры вычисляются по их значениям. Для сравнения использованы зависимости $M_0(K_{\Pi})$ и $r_0(K_{\Pi})$ из [10].

Как видно из рисунка 4, для большинства землетрясений 2014 г. средние значения M_0 и r_0 находятся в пределах доверительных областей долговременных зависимостей $M_0(K_\Pi)$, $r_0(K_\Pi)$. При этом значения M_0 были равномерно распределены относительно регрессии $M_0(K_\Pi)$, а r_0 – в двух случаях имели наибольшие положительные отклонения δr_0 от зависимости $r_0(K_\Pi)$. Это относится к сравнительно слабым землетрясениям 30 марта в 074 55мин с K_Π =8.2 и h = 21 км (№7) из Северозападного района (район 6) и 6 апреля в 204 47мин с K_Π =7.2 и h = 23 км (№8) из центральной зоны региона (район 2).

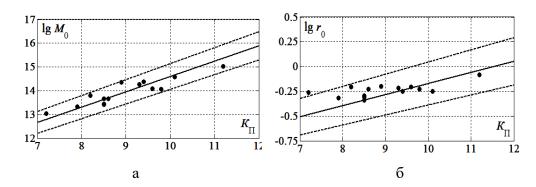


Рис. 4. Сравнение динамических параметров очагов землетрясений Крыма за 2014 г.: a — сейсмического момента M_0 и δ — радиуса круговой дислокации r_0 с долговременными зависимостями $M_0(K_\Pi)$ и $r_0(K_\Pi)$ [10]. Пунктиром обозначены пределы погрешностей.

Завышение значений r_0 для сейсмических событий низкого энергетического уровня может быть связано не только с естественными особенностями очагов, но с меньшей точностью определения глубин очагов и, соответственно, выбором скоростной модели среды для этих глубин. Как следует из формулы (2), размеры радиуса дислокации r_0 прямо связаны со скоростью распространения сейсмических волн. Не исключены также и погрешности, связанные с суперпозицией слабых сейсмических колебаний и микросейсмического фона, искажающего амплитудный

спектр. Эти вопросы требуют специальной детальной проработки на представительном материале.

Дополнительно можно отметить, что предварительные расчеты спектров и анализ полученных материалов по станциям «Феодосия» и «Керчь» за 2014 г. показали, что спектральная плотность и, соответственно, рассчитанный сейсмический момент по этим станциям на порядок ниже, чем среднее значение по группе других станций Крыма, а угловая частота существенно сдвинута в область низкой частоты. Без специальной проверки и установления причин таких отклонений результаты расчетов по этим станциям в данной работе не использованы и пока не публикуются.

Список литературы

- 1. Свидлова В.А., Сыкчина З.Н., Пасынков Г.Д. Оценка представительности землетрясений Крыма по материалам цифровых станций // Сейсмологический бюллетень Украины за 2009 год. Севастополь: НПЦ "Экоси-Гидрофизика", 2011. С. 65–67.
- 2. Свидлова В.А., Пасынков Г.Д. Сейсмичность Крыма в 2012 году // Сейсмологический бюллетень Украины за 2012 год. Севастополь: НПЦ "Экоси-Гидрофизика", 2013. С. 6–10.
- 3. Пустовитенко Б.Г., Пантелеева Т.А. Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 251 с.
- Brune I.V. Tectonic stress and the spectra of seismic shear waves from earthquakes // J.Geophys. Res. 1970. V.75, № 26. P. 4997–5009.
- 5. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. 1989. № 2. С. 66–79.
- 6. Аптекман Ж.Я., Дараган С.К., Долгополов В.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. 1985. №2. С. 60–70.
- 7. Костров Б.В. Механика очага тектонического землетрясения. М.: Наука, 1975. 179 с.
- 8. Кейлис-Борок В.И. Исследование источников, приближенно эквивалентных очагам землетрясений // Труды Геофизического Института АН СССР. 1959, № 9 (136). С. 20–42.
- Hanks T.C., Kanamori H.A. Moment magnitude scale // J. Geophys. Res. 1979. T. 84. № 35. P. 2348– 2350
- 10. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А., Поречнова Е.И. Пространственные особенности очаговых параметров землетрясений Крыма // Сейсмичность Северной Евразии. Обнинск: ГС РАН, 2008. С. 238–242.
- 11. Пустовитенко Б.Г., Калинюк И.В., Мержей Е.А. Спектральные и динамические параметры очагов землетрясений Крыма 2009 года // Сейсмологический бюллетень Украины за 2009 год. Севастополь: НПЦ « ЭКОСИ-Гидрофизика», 2011. С. 11–23.
- 12. Пустовитенко Б. Г., Калинюк И. В., Мержей Е. А. Спектральные и динамические параметры очагов землетрясений Крыма 2010 года // Сейсмологический бюллетень Украины за 2010 год. Севастополь: НПЦ « ЭКОСИ-Гидрофизика», 2011. С. 11–23.
- 13. Пустовитенко Б. Г., Калинюк И. В., Мержей Е. А., Пустовитенко А. А. Очаговые параметры землетрясений Крыма 2011 года // Сейсмологический бюллетень Украины за 2011 год. Севастополь: НПЦ « ЭКОСИ-Гидрофизика», 2012. С. 17–35.
- 14. Пустовитенко Б.Г., Калинок Й.В., Мержей Е.А, Пустовитенко А.А. Спектральные и динамические параметры очагов землетрясений Крыма 2012 года // Сейсмологический бюллетень Украины за 2012 год. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2013. С. 11–21.

15. Пустовитенко Б.Г., Мержей Е.А., Пустовитенко А.А. Калинюк И.В. Очаговые параметры землетрясений Крыма 2013 года // Сейсмологический бюллетень Украины за 2013 г. Севастополь: НПЦ «ЭКОСИ Гидрофизика», 2014. С. 12–21.

SPECTRAL AND DYNAMIC PARAMETERS OF THE FOCI OF 2014 CRIMEAN EARTHQUAKES

Pustovitenko B.G., Eredzhepov E.E.

Seismology Department of S.I. Subbotin Geophysics Institute UNAS, Simferopol E-mail: bpustovitenko@mail.ru

The spectral and dynamic source parameters ($(M_0, r_0, \Delta \sigma, \varepsilon, \eta \sigma, \Delta, u, Eu \bowtie Mw)$) of 14 Crimean earthquakes with $K_{\Pi} = 7.2-11.2$, restored by 120 amplitude spectra of longitudinal and transverse seismic waves recorded by digital regional seismic stations have been shown. Approximation of the spectra and the source dynamic parameters calculation based on their parameters has been performed in the framework of the the Brune dislocation model. The highest values of dynamic parameters have been obtained for the perceptible earthquake on March 2 with $K_{\Pi} = 11.2$, and the lowest have been obtained for its weak aftershock on April 6 with $K_{\Pi} = 7.2$. Negative values of the radiation friction are characteristic of all studied sources of March 2 perceptible earthquake zone which indicates unequal distribution of the strength properties of the depth media in the focal zone. Within the total range of energies the value of the stress drop does not exceed $\Delta \sigma = 10^6$ (10 bar), and the apparent stress drop does not exceed $\eta \overline{\sigma} < 5.10^5 \, Pa$ (5 bar). The average values of seismic moments and circular dislocation radius within the errors of their determination match the average long-term correlations of the parameters on the earthquake energy level obtained by the analog recording. The analysis of the results has been presented.

Keywords: amplitude spectrum, Bruno model, spectral density, the angular frequency, seismic moment, dislocation radius, apparent stress drop, radiation friction.

References

- Svidlova V.A., Sicchina Z.N., Pasinkov G.D. Evaluation of the Crimean earthquakes representativeness by the materials of the digital stations // Seismological Bulletin of Ukraine for the year 2009. The Sevastopol, SPC "Eco-Hydrophysics", 2011. P. 65–67.
- Svidlova V.A., Pasinkov G.D. Seismicity of the Crimea in 2012 // Seismological Bulletin of Ukraine for the year 2012. The Sevastopol, SPC "Eco-Hydrophysics", 2013. P. 6–10.
- 3. Pustovitenko B.G., Panteleyeva T.A. Spectral and focal parameters of earthquakes of the Crimea. Kiev: Naukova Dumka, 1990. 251 p.
- Brune I.V. Tectonic stress and the spectra of seismic shear waves from earthquakes // J.Geophys. Res. 1970. V.75, № 26. P. 4997–5009.
- Aptekman J.Ya., Belavina Yu.F., Zakharova A.I., Zobin V.M., Kogan S.Ya., Korchagina O.A., Moskvina A.G., and Polikarpova L.A., Chepkunas L.S. Spectra of P-waves in the problem of determining the dynamic parameters of earthquake sources. The transition from station to focal range and the calculation of dynamic source parameters // Volcanology and seismology, 1989, № 2. P. 66–79.

- Aptekman J.Ya., Daragan S.K., Dolgopolov V.V., Zakharova A.I., Zobin V.M., Kogan S.Ya., Korchagina O.A., Moskvina A.G., and Polikarpova L.A., Chepkunas L.S. Spectra of P-waves in the problem of determining the dynamic parameters of earthquake sources. Harmonization of raw data and the procedure of calculating the amplitude spectra // Volcanology and seismology, 1985. №2. P. 60–70.
- 7. Kostrov B.V. Mechanics of the tectonic earthquake focus. M.: Nauka, 1975. 179 p.
- 8. Keilis-Borok V.I. Study of the sources, approximately equivalent to the foci of earthquakes // Proc. Geophysical Institute of Academy of Sciences of the USSR. 1959, № 9 (136). P. 20–42.
- Hanks T.C., Kanamori H.A Moment magnitude scale // J. Geophys. Res. 1979. V. 84. № 35. P. 2348– 2350.
- Pustovitenko B.G., Pustovitenko A.A., Kapitanova S.A., Porechnova E.I. Spatial features of focal parameters of earthquakes in the Crimea // the Seismicity of Northern Eurasia, Obninsk: GS RAS, 2008.
 P. 238–242.
- 11. Pustovitenko B.G., Kalinyuk I.V., Merzhey E.A. Spectral and dynamic parameters of the foci of earthquakes of the Crimea in 2009 // Seismological Bulletin of Ukraine for the year 2009. Sevastopol, SPC "ECO-Hydrophysics", 2011. P. 11–23.
- 12. Pustovitenko B.G., Kalinyuk I.V., Merzhey E.A. Spectral and dynamic parameters of the foci of earthquakes of the Crimea in 2010 // Seismological Bulletin of Ukraine for the year 2010. Sevastopol, SPC "ECO-Hydrophysics", 2011. P. 11–23.
- 13. Pustovitenko B.G., Kalinyuk I.V., Merzhey E.A., Pustovitenko A.A. Focal parameters of earthquakes of the Crimea in 2011 // Seismological Bulletin of Ukraine for 2011. The Sevastopol, SPC "ECO-Hydrophysics", 2012. P. 17–35.

Ученые записки Таврического национального университета имени В. И. Вернадского Серия «География». Том 27 (66), № 2. 2014 г. С. 87–96.

УДК 550.348.096.64

СЕЙСМИЧНОСТЬ КАРПАТ В 2014 ГОДУ

Вербицкий С. Т., Пронишин Р. С., Прокопишин В. И., Стецкив А. Т., Чуба М. В., Нищименко И. М., Келеман И. Н.

Институт геофизики им. С. И. Субботина Национальной Академии наук Украины, г. Львов E-mail: pronrom@gmail.com

Описаны особенности сейсмичности Карпатского региона в 2014 году. Представлен каталог землетрясений, распределение землетрясений по районам и энергетическим классам, приведены графики выделения сейсмической энергии и количества землетрясений в регионе по месяцам. Дана краткая характеристика сейсмичности отдельных сейсмоактивных районов Карпатского региона. Ключевые слова: землетрясение, эпицентр, очаг, сейсмичность, сейсмическая активность, сейсмическая энергия, энергетический класс, магнитуда, интенсивность землетрясения, сейсмическая станция, сейсмоактивный район, Карпатский регион, глубинный разлом.

ВВЕДЕНИЕ

В состав региона «Карпаты» входит обширная территория Украины, Молдовы, Румынии, Венгрии, Чехословакии, и др. (в рамках географических координат: $\phi=44^{\circ}\div48^{\circ}$, $\lambda=21^{\circ}\div30^{\circ}$, землетрясения которых представляют сейсмическую опасность для юга — запада Украины. Сводная обработка и интерпретация происходящих в регионе Карпат землетрясений проводится в Карпатском отделе сейсмичности Института геофизики НАНУ (г. Львов) по данным сейсмостанции ИГ НАНУ и международной сети наблюдений. В 2014 г. стационарная сеть региона пополнилась новой станцией «Холмец». В данной статье представлены каталоги зарегистрированных в 2014 г. землетрясений и описаны особенности сейсмичности в девяти районах региона.

1. СИСТЕМА НАБЛЮДЕНИЙ

В Карпатском регионе в 2014 году функционировала сейсмологическая сеть инструментальных наблюдений, состоящая из 20 стационарных сейсмических станций: "Львов" (LVV – Лвв), "Ужгород" (UZH – Ужг), "Межгорье" (MEZ – Мжг), "Косов" (KSV – Кос), "Моршин" (MORS – Мрш), "Тросник" (TRSU – Трс), "Нижнее Селище" (NSLU – Нсл), "Городок" (HORU – Гор), "Черновцы" (СНRU – Чрн), "Берегово" (ВЕRU – Брг), "Брид"(ВRIU – Брд), "Мукачево" (МИКИ – Мук), "Рахов" (RAK – Рах), "Королево" (КОRU – Кор), "Каменец-Подольский" (КМРИ – Кмп), "Новоднестровск" (NDNU – Ндн), "Сходница" (SHIU – Схд), "Старуня" (STNU – Стр), "Стужица" (STZU – Стж), "Холмец" (НОLU – Хлм). Станция "Холмец" была открыта в июле 2014 г. и расположена в 14 км на юго-восток от Ужгорода. Кроме того, при интерпретации цифровых записей использованы данные временных сейсмостанций, установленных в районе Днестровского гидроузла (NDNU1 – в с. Нышивцы, NDNU2 – в с. Шебутинцы, NDNU3 – в с. Розкопинцы). Наблюдения на временных станциях велись с 10 апреля по 28 августа 2014 года в рамках договорных работ с Днестровской ГЭС. На всех сейсмических станциях

инструментальные наблюдения проводились с использованием цифровой аппаратуры, созданной в Отделе сейсмичности Карпатского региона Института геофизики. Основные параметры регистрирующей аппаратуры приведены в таблице 1. Производство и обработка наблюдений на сейсмических станциях проводилась согласно Инструкции [1].

Для получения динамических характеристик на сейсмических станциях использовались амплитудно-частотные характеристики каналов в формате PAZ GSE1.

2. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Примеры амплитудно-частотных характеристик для цифровых сейсмических станций «Львов» и «Ужгород» были представлены в статье за 2013 год [2].

Цифровой способ регистрации сейсмических колебаний обладает высокой разрешающей способностью и широким динамическим диапазоном. При обработке и интерпретации цифровых записей могут быть использованы различные фильтры, а также коррекция за характеристику аппаратуры. Это даёт возможность регистрировать более слабые землетрясения. Цифровое представление записей позволяет сохранять их непосредственно в базе данных.

При обработке и интерпретации цифровых записей для более надёжного выделения нечётких или зашумленных сейсмических фаз используется полосовой фильтр Баттерворта (0.5 Γu – 15 Γu). Выбор параметров фильтра зависит от качества (соотношение сигнал-шум) и спектральной характеристики изучаемого сигнала.

Таблица 1. Аппаратура и технические характеристики цифровых сейсмических станций в 2014 г.

$N_{\underline{0}}$	Название	Н,	Коорд	инаты		Апп	аратура	
	станции	\mathcal{M}	φ ^O , N	λ ^o , E	Тип	Динами-	Частотный	Чувствит.
	(год открытия)				аппара-	ческий	диапазон	отсчет
					туры	диапазон		(M/C)
1	2	3	4	5	6	7	8	9
1	Львов LVV (1899)	320	49.820	24.031	DAS-04.	120	0.02-15	1.47×10 ⁻⁹
					СД-1			
					Guralp CMG-40T	140	0.03-12	0.8×10 ⁻⁹
2	Моршин MORS (1978)	260	49.124	23.876		120	0.2-15	_
3	Ужгород UZH (1934)	160	48.629	22.291	DAS-04 СКД	120	0.2-15	1.05×10 ⁻⁹
4	Межгорье MEZ (1961)	420	48.543	23.498	DAS-05 СКД	120	0.02-15	9.6×10 ⁻¹⁰
5	Тросник TRSU (1987)	120	48.095	22.957	DAS-05 CM-3KB	120	0.2-15	2.05×10 ⁻¹⁰
6	Нижнее Селище NSLU (1987)	250	48.198	23.457	DAS-05 CM-3KB	120	0.2-15	_
7	Рахов RAK (1956)	460	48.036	24.173	DAS-04 СКД	120	0.02-15	4.98×10 ⁻¹⁰

Продолжение таблицы 1.

1 2 3 4 5 6 7 8 9 8 Косов KSV (1961) 450 48.314 25.065 DAS-04 120 0.02-15 6.64×10 ⁻¹⁰ 9 Черновцы СНК (1907) 300 48.298 25.922 DAS-05 120 0.02-15 1.27×10 ⁻⁹ 10 Городок НОК (1997) 340 49.214 26.426 DAS-05 120 0.2-15 - 11 Королево КОК (1998) 160 48.157 23.134 DAS-05 120 0.2-15 1.05×10 ⁻¹⁰ 12 Мукачево МУКИ (1999) 125 48.454 22.687 DAS-05 120 0.2-15 1.05×10 ⁻¹⁰ 13 Берегово ВЕRU (2000) 160 48.234 22.646 DAS-05 120 0.2-15 1.17*10 ⁻¹⁰ 15 Каменец-Подольский КМРU (2006) 180 48.338 23.020 DAS-05 120 0.2-15 1.85×10 ⁻¹⁰ 16 Новоднестровск NDNU (2006) 242 48.595 27.366								продолжени	ие таолицы и
9 Черновцы СНКU (1907) 300 48.298 25.922 DAS-05 CKД 120 0.02-15 1.27×10°9 10 Городок НОRU (1991) 340 49.214 26.426 DAS-05 CKД 120 0.2-15 — 11 Королево КОRU (1998) 160 48.157 23.134 DAS-05 CM-3KB 120 0.2-15 1.05×10 ⁻¹⁰ 12 Мукачево МИКИ (1999) 125 48.454 22.687 DAS-05 CM-3KB 120 0.2-15 1.17*10 ⁻¹⁰ 13 Берегово ВЕВСИ (2000) 160 48.234 22.646 DAS-05 CM-3KB 120 0.2-15 — 14 Брил ВВІИ (2000) 180 48.338 23.020 DAS-05 CM-3 120 0.2-15 — 15 Каменец-Подольский КМРИ (2005) 121 48.563 26.460 DAS-05 CM-3 120 0.2-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-05 D	_	_	3	4	5	6	7	Ü	
9 Черновцы СНКU (1907) 300 48.298 25.922 DAS-05 CKД 120 0.02-15 1.27×10-9 10 Городок НОRU (1991) 340 49.214 26.426 DAS-05 CKД 120 0.2-15 — 11 Королево КОRU (1998) 160 48.157 23.134 DAS-05 CM-3KB 120 0.2-15 1.05×10-10 12 Мукачево МUKU (1999) 125 48.454 22.687 DAS-05 CM-3KB 120 0.2-15 1.17*10-10 13 Берегово ВЕRU (2000) 160 48.234 22.646 DAS-05 CM-3KB 120 0.2-15 1.17*10-10 14 Брид ВВІ (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10-10 15 Каменец-Подольский КМРU (2005) 121 48.563 26.460 DAS-05 CM-3KB 120 0.02-15 - 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-05 CM-3KB 120 0.2-15 3.04×10-10 18 Стариня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15	8	Косов KSV (1961)	450	48.314	25.065		120	0.02-15	6.64×10 ⁻¹⁰
CHRU (1907) CKД CKД 10 Городок HORU(1991) 340 49.214 26.426 DAS-05 CM-3 120 0.2-15 — 11 Королево КОRU (1998) 160 48.157 23.134 DAS-05 CM-3KB 120 0.2-15 1.05×10 ⁻¹⁰ 12 Мукачево МИКU (1999) 125 48.454 22.687 DAS-05 CM-3KB 120 0.2-15 1.17*10 ⁻¹⁰ 13 Берегово ВЕВИ (2000) 160 48.234 22.646 DAS-05 CM-3KB 120 0.2-15 — 14 Брид ВКИ (2000) 180 48.338 23.020 DAS-05 CM-3 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРU (2005) 124 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-05 DAS-05 CM-3 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница STZU (2010) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 — 18 Старуня STNU (2007) 391 48.710 22.62						СКД			
10 Городок НОRU (1991) 340 49.214 26.426 DAS-05 CM-3 120 0.2-15 — 11 Королево КОRU (1998) 160 48.157 23.134 DAS-05 CM-3KB 120 0.2-15 1.05×10 ⁻¹⁰ 12 Мукачево МИКИ (1999) 125 48.454 22.687 DAS-05 CM-3KB 120 0.2-15 1.17*10 ⁻¹⁰ 13 Берегово ВЕRU (2000) 160 48.234 22.646 DAS-05 CM-3KB 120 0.2-15 — 14 Брид ВЕRU (2000) 180 48.338 23.020 DAS-05 CM-3 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРU (2000) 121 48.563 26.460 DAS-05 CM-3 120 0.2-15 1.85×10 ⁻¹⁰ 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-05 CM-3 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 - 18 Стауки в STZU (201	9		300	48.298	25.922	DAS-05	120	0.02-15	1.27×10 ⁻⁹
Королево 160 48.157 23.134 DAS-05 120 0.2-15 1.05×10 ⁻¹⁰ 1.05×10 ⁻¹⁰ 1.25 48.454 22.687 DAS-05 DAS-05 120 0.2-15 1.17*10 ⁻¹⁰ 1.3 Берегово ВЕВСИ (2000) 160 48.234 22.646 DAS-05 CM-3KB 120 0.2-15 1.17*10 ⁻¹⁰ 1.3 Берегово ВЕВСИ (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 1.8 5µµД BRIU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 1.8 5µµД BRIU (2000) 121 48.563 26.460 DAS-05 CM-3KB 120 0.02-15 - CM-3KB 120 0.02-15 - CM-3KB 120 0.02-15 1.85×10 ⁻¹⁰ 120 0.02-15 1.85×10 ⁻¹⁰ 120 0.02-15 1.85×10 ⁻¹⁰ 120 0.02-15 1.85×10 ⁻¹⁰ 120 0.02-15 1.84×10 ⁻¹⁰ 120 0.2-15 120 0.2-15 120 0.2-15 120 0.2-15 120 0.2-15 120 0.2-15 120 0.2-		CHRU (1907)				СКД			
11 Королево КОRU (1998) 160 48.157 23.134 DAS-05 CM-3KB 120 0.2-15 1.05×10 ⁻¹⁰ 12 Мукачево МИКИ (1999) 125 48.454 22.687 DAS-05 CM-3KB 120 0.2-15 1.17*10 ⁻¹⁰ 13 Берегово ВЕRU (2000) 160 48.234 22.646 DAS-05 CM-3KB 120 0.2-15 — 14 Брид ВЕRU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 — 15 Каменец-Подольский КМРИ (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-05 CKД 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 242 48.595 27.366 DAS-05 D	10	Городок HORU (1991)	340	49.214	26.426	DAS-05	120	0.2-15	_
KÖRU (1998) СМ-ЗКВ Осм-ЗКВ						CM-3			
12 Мукачево МИКИ (1999) 125 48.454 22.687 DAS-05 CM-3KB 120 0.2-15 1.17*10 ⁻¹⁰ 13 Берегово ВЕRU (2000) 160 48.234 22.646 DAS-05 CM-3 120 0.2-15 — 14 Брид ВRIU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРИ (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровек NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница STRU (2006) 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 1.84×10 ⁻¹⁰ 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец НОLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 <td< td=""><td>11</td><td>Королево</td><td>160</td><td>48.157</td><td>23.134</td><td>DAS-05</td><td>120</td><td>0.2-15</td><td>1.05×10⁻¹⁰</td></td<>	11	Королево	160	48.157	23.134	DAS-05	120	0.2-15	1.05×10 ⁻¹⁰
МИКИ (1999) СМ-3КВ О.2-15 — 13 Берегово ВЕRU (2000) 160 48.234 22.646 DAS-05 CM-3 120 0.2-15 — 14 Брид ВRIU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРU (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 — 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец НОLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 — 21 Нышивцы NDNU 1(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 2(2014) (временная) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —						СМ-3КВ			
13 Берегово ВЕRU (2000) 160 48.234 22.646 DAS-05 CM-3 120 0.2-15 — 14 Брид ВRIU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРИ (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CKД 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 — 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец HOLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 — 21 Нышивцы NDNU 1(2014) 258 48.666 27.197 DAS-05 CM-3 120 0.2-15 — <td>12</td> <td>Мукачево</td> <td>125</td> <td>48.454</td> <td>22.687</td> <td>DAS-05</td> <td>120</td> <td>0.2-15</td> <td>1.17*10⁻¹⁰</td>	12	Мукачево	125	48.454	22.687	DAS-05	120	0.2-15	1.17*10 ⁻¹⁰
BÉRU (2000) CM-3 14 Брид ВRIU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРU (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 5.04 - 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 5.04 1.84×10 ⁻¹⁰ 20 Холмец НОLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 5.04 - 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 5.04 - 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 5.04 - 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 5.04 -						СМ-3КВ			
BERU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРU (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 — 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец HOLU (2014) 134 48.527 22.384 DAS-05 CM-3 120 0.2-15 — 21 Нышивцы NDNU 1(2014) (временная) 258 48.666 27.197 DAS-05 CM-3 120 0.2-15 — 22 Пебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3 120 0.2-15	13	Берегово	160	48.234	22.646	DAS-05	120	0.2-15	_
14 Брид ВRIU (2000) 180 48.338 23.020 DAS-05 CM-3KB 120 0.2-15 1.85×10 ⁻¹⁰ 15 Каменец-Подольский КМРU (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 - 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец HOLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 — 21 Нышивцы NDNU 1(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 22 ПІвебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3KB 120 0.2-15 —						CM-3			
BRIU (2000) СМ-3KB Ологаний каменец-Подольский кмРU (2005) 121 48.563 26.460 DAS-05 CKД 120 0.02-15 — 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 - 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец НОLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 - 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 - 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 - 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 -	14		180	48.338	23.020	DAS-05	120	0.2-15	1.85×10 ⁻¹⁰
КМРU (2005) СКД О.2-15 3.04×10 ⁻¹⁰ 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 - 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец НОLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 - 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 0.2-15 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 - 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 -						СМ-3КВ			
КМРU (2005) СКД О.2-15 3.04×10-10 16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10-10 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10-10 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 - 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10-10 20 Холмец НОLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 - 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 - 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 - 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 -	15	Каменец-Подольский	121	48.563	26.460	DAS-05	120	0.02-15	_
16 Новоднестровск NDNU (2006) 242 48.595 27.366 DAS-04 CM-3KB 120 0.2-15 3.04×10 ⁻¹⁰ 17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 — 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец HOLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 — 21 Нышивцы NDNU 1(2014) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 — 22 Шебутинцы NDNU 2(2014) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —									
NDNU (2006) СМ-3КВ Олеменная СМ-3КВ Олеменная О	16		242	48.595	27.366		120	0.2-15	3.04×10 ⁻¹⁰
17 Сходница SHIU (2006) 600 49.225 23.359 DAS-05 CM-3 120 0.2-15 6.98×10 ⁻¹⁰ 18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 - 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец HOLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 - 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 - 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 - 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 -						СМ-3КВ			
18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 — 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец HOLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 — 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 — 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —	17	Сходница	600	49.225	23.359	DAS-05	120	0.2-15	6.98×10 ⁻¹⁰
18 Старуня STNU (2007) 391 48.710 24.502 DAS-05 CM-3 120 0.2-15 — 19 Стужица STZU (2011) 385 49.016 22.623 DAS-05 CM-3KB 120 0.2-15 1.84×10 ⁻¹⁰ 20 Холмец HOLU (2014) 134 48.527 22.384 DAS-05 CM-3KB 120 0.2-15 — 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 — 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —						CM-3			
CM-3	18		391	48.710	24.502		120	0.2-15	_
CM-3KB		, ,				CM-3			
CM-3KB	19	Стужица STZU (2011)	385	49.016	22.623	DAS-05	120	0.2-15	1.84×10 ⁻¹⁰
HOLU (2014) CM-3KB 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 — 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —						СМ-3КВ			
HOLU (2014) CM-3KB 21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 — 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —	20	Холмец	134	48.527	22.384	DAS-05	120	0.2-15	_
21 Нышивцы NDNU 1(2014) (временная) 237 48.595 27.533 DAS-05 CM-3 120 0.2-15 — 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —									
NDNU 1(2014) СМ-3 (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — NDNU 2(2014) СМ-3KB (временная) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 — 120 0.2-15 — 120 0.2-15 —	21		237	48.595	27.533	DAS-05	120	0.2-15	_
(временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 - 22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 - 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 -									
22 Шебутинцы NDNU 2(2014) (временная) 258 48.666 27.197 DAS-05 CM-3KB 120 0.2-15 — 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —									
NDNU 2(2014) (временная) CM-3KB 23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —	22		258	48.666	27.197	DAS-05	120	0.2-15	_
(временная) 113 48.493 27.429 DAS-05 120 0.2-15 — NDNU 3(2014) CM-3									
23 Розкопинцы NDNU 3(2014) 113 48.493 27.429 DAS-05 CM-3 120 0.2-15 —									
NDNU 3(2014) CM-3	23		113	48.493	27.429	DAS-05	120	0.2-15	=
		(временная)							

[•] На всех сейсмических станциях регистрация событий проводилась по всем трем компонентам: N-S; E-W; Z.

Для расчета энергетических характеристик сейсмических событий производится корректировка спектра сигнала за амплитудно-частотную характеристику аппаратуры, а также приведение сигнала к единицам движения грунта (мкм, мкм/сек). Для этого используются рассчитанные для каждого сейсмического канала амплитудно-частотная характеристика и чувствительность на отсчёт (мкм/сек).

Для определения основных параметров: времени возникновения, координат и глубин очагов, невязок определений и динамических характеристик землетрясений Карпатского региона использовались данные Крымской сети, сейсмических служб Молдовы, Польши, Словакии, Румынии, Болгарии и Венгрии.

При комплексной обработке землетрясений на станциях определялись энергетические параметры зарегистрированных сейсмических событий.

Для местных землетрясений энергетический класс (K_P) определялся по номограмме Раутиан [3], а локальная магнитуда по Рихтеру:

$$ML = \lg(A_{z \max}) - \lg(A_0).$$

Для землетрясений района Вранча магнитуда определялась по поперечной волне по формуле из [1]

$$MSH = \lg A_S + 1.32 \cdot \lg(\Delta, \kappa_M) + 0.8$$

и рассчитанного энергетического класса по уравнению Т.Г. Раутиан [4].

$$K_{\rm P} = 1.8 \cdot MSH + 4.0.$$

На всех сейсмостанциях в качестве энергетических параметров сейсмических событий определялись магнитуда по длительности (D) записи с использованием формулы A.C. Маламуда из [5]:

$$MD = 2.67 \cdot \lg(D, мин) + 1.65$$

и рассчитанный энергетический класс КО по формуле Т.Г. Раутиан из [4]:

$$KD = 1.8 \cdot MD + 4.0.$$

Вся территория Карпатского региона разделена на девять сейсмоактивных районов. Комплексная обработка данных проводилась для территории, ограниченной координатами: 47°N–21°E; 51°N–21°E. 51°N–30°E; 44°N–24°E; 47°N–24°E. Контуры сейсмоактивных районов и их номера показаны на карте эпицентров землетрясений (Рис. 1).

Основные параметры землетрясений определялись с помощью программы НҮРО [6]. Входными данными являются: дата землетрясения, географические координаты сейсмических станций и времена вступлений сейсмических волн Р и S на этих станциях. Для расчетов используются соответствующие годографы, заданные в табличном виде. Программа выполняет расчёт координат, времени возникновения землетрясения И оценку точности результата, среднеквадратическое отклонение по координатам эпицентра и времени в очаге. Учитывая особенности распространения сейсмических волн в Карпатском регионе для определения основных параметров землетрясений Северо-Западного района (№1) использовался региональный Карпатский годограф [7. 9], а для очагов зоны Вранча ($Noldsymbol{0}2$) и района ($Noldsymbol{0}5$) — Буковина использовался годограф Джеффриса-Буллена [8].

Всего в 2014 году сейсмическими станциями Карпатского региона Украины зарегистрировано 81 землетрясение энергетического класса $K_P = 5.1 \div 14.3$. Для всех событий определены основные параметры. На карте (Рис. 1) изображены эпицентры землетрясений, которые зарегистрированы в сейсмоактивных районах Карпатского региона.

Результаты обработки сейсмических событий представлены в Каталоге и Подробных данных о землетрясениях Карпатского региона за 2014 год в таблицах 2 и 3, которые в виду их большого объема помещены в конце настоящей статьи.

Сведения о распределении землетрясений по районам, энергетическим классам и величине выделившейся сейсмической энергии приведены в таблице 4.

Выделившаяся суммарная сейсмическая энергия в Карпатском регионе в 2014 году составила $\Sigma E=2.11\cdot 10^{14} \mbox{Дж}$. что выше уровня предыдущего года ($\Sigma E=1.33\cdot 10^{14} \mbox{Дж}$) [2, 10]. Сейсмическая энергия в районе Вранча ($\mathbb{N} \geq 2$) составила $\Sigma E=2.11\cdot 10^{14} \mbox{Дж}$ а также выше уровня прошлого года ($\Sigma E=1.32\cdot 10^{14} \mbox{Дж}$).

Сейсмическая энергия в Северо-Западном районе (№1) составила $\Sigma E=2.80\cdot 10^9 \mathcal{Д} ж$, что несколько выше выделившейся энергии в 2013 году ($\Sigma E=1.38\cdot 10^9 \mathcal{Д} ж$) [10].

Суммарная сейсмическая энергия. которая выделилась в Закарпатье, составляет $\Sigma E=2.68\cdot 10^9 \mbox{Д}_{\odot}$. Характер активности сейсмических процессов на протяжении года по месяцам в виде диаграмм представлен на рисунках 2 и 3. Наибольшее число землетрясений произошло в ноябре — 16, а наименьшее в сентябре — всего одно. Сейсмичность Северо-Западного района (№1) в 2014 г. представлена 32 событиями. В феврале, июле, августе и сентябре здесь не было зарегистрировано ни одного землетрясения.

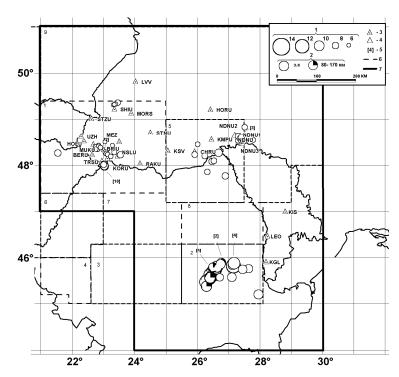


Рис. 1. Карта эпицентров землетрясений Карпат за 2014 год. I — энергетический класс; 2 — глубина очага, κm ; 3 — сейсмическая станция; 4 — временные сейсмические станции; 5 — количество землетрясений с одинаковым эпицентром; 6 — сейсмоактивные районы: (1) — Северо-Западный; (2) — Вранча; (3) — Южные Карпаты; (4) — Банат; (5) — Буковина; (6) — Кришана; (7) — Трансильвания; (8) — Бакэу. (9) — Северо-Восточный; (8) — граница региона.

Район Вранча (№2) был особенно активным в ноябре. В мае, июне и июле здесь землетрясений не зафиксировано.

Сейсмическая активность наблюдалась также в районе N = 5 — Буковина. за исключением сентября, ноября и декабря.

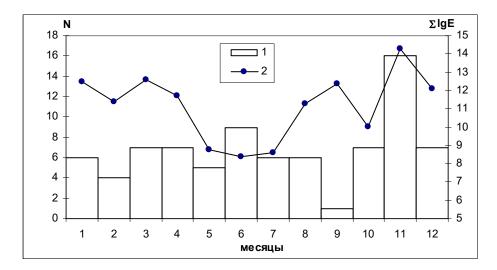


Рис. 2. Распределение количества землетрясений (1) и логарифма выделенной энергии (2) в регионе по месяцам за 2014 год.

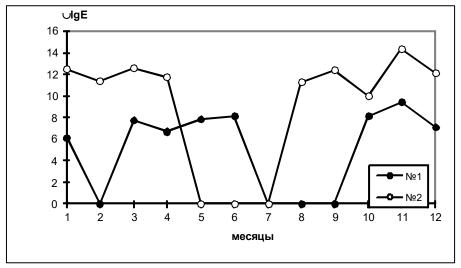


Рис. 3. Распределение логарифма выделенной энергии по месяцам за 2014 год в Северо-Западном районе (№1) и в районе Вранча (№2).

Район №1. Северо-Западный. В этом сейсмоактивном районе зарегистрировано 32 землетрясения энергетического класса K_P =5.2÷8.9. суммарная сейсмическая энергия которых составляет ΣE =2.80•10⁹Дж.

а) В Закарпатье отмечено 27 землетрясений энергетического класса K_P =5.2÷8.9. Их суммарная сейсмическая энергия составляет ΣE =2.68·10⁹Дж.

Эпицентры землетрясений находятся в пределах ранее выделенных сейсмоактивных зон и приурочены к Закарпатскому и Припаннонскому глубинным разломам. расположенным по обе стороны от Выгорлат-Гутинского вулканического хребта.

Вдоль вулканического хребта 3 эпицентра землетрясений расположены в районе г. Иршава, 3 — в районе г. Хуст, 1 — вблизи г. Свалявы, 2 — возле с. Кушница, 1 — в районе с. Брид и 1 — вблизи с. Н. Селище.

Таблица 4. Распределение землетрясений по энергетическим классам и суммарная сейсмическая энергия по районам

№	Район	5	6	7	8	9	10	11	12	13	14	К-во	ΣЕ, Дж
												земле-	
												трясений	
1	Северо-Западный											32	2.80×10^9
	а) Закарпатье	2	12	8	2	3						27	2.68×10^9
	б) Предкарпатье	1	2		1							4	6.52×10^8
	в) Восточная Венгрия				1							1	5.01×10^{8}
2	Вранча											28	2.11×10^{14}
	а) горы Вранча					3	6	4	3	2		18	1.06×10^{13}
	б) Предкарпатский прогиб				1	3	2	1	1		1	9	2.01×10^{14}
	в) район Браила						1					1	1.00×10^{10}
5	Буковина											21	2.51×10^{09}
	а) Украина	1	8	3	2	2						16	9.26×10^{8}
	б) Румыния, Ботошаны			1	1	2						4	1.09×10^9
	в) Молдова					1						1	5.01×10^{8}
	Всего:	4	22	12	8	14	9	5	4	2	1	81	2.11×10 ¹⁴

В июне зарегистрировано шесть землетрясений в районе г. Мукачево с K_P =5.4÷8.0. Наиболее сильное из них было зарегистрировано 7 июня в 19 ν 41 мин с κ 41 мин с κ 42 и магнитудой κ 43 мин с определялись с использованием данных сейсмических станций Карпатского региона Украины, Румынии, Словакии и Венгрии.

На протяжении года в пределах Закарпатской низменности зарегистрировано 10 землетрясений в районе с. Тросник с K_P =5.4÷9.0. Землетрясение, которое произошло 15 ноября 2014 года в 03 ч 15 мин, было довольно сильным по сравнению с остальными. Его энергетический класс K_P =9.0 и магнитуда MSH=2.4. Очаг землетрясения расположен в земной коре на глубине h=10 км. Согласно информации сотрудников сейсмостанции «Тросник» землетрясение ощущалось в населенных пунктах Тросник и Фанчиково с интенсивностью 4 и 4–5 баллов по шкале MSK-64 [11]. Некоторые спящие люди просыпались, испытывали испуг, выходили во двор, ощущали дрожание домов, мебели, было замечено движение

незакрытых дверей и окон. Был слышен подземный гул, который напоминал движение большой грузовой машины. Данное землетрясение было зарегистрировано сейсмическими станциями Карпатского региона Украины, Румынии, Словакии, Венгрии и Молдовы.

Еще два довольно сильных землетрясения в районе г. Тросник было зарегистрировано 15 ноября в 02 ч 42 мин с K_P =8.8 и MSH=2.4, а также 26 ноября в 10 ч 49 мин с K_P =9.0 и магнитудой MSH=2.3, расчетная интенсивность в эпицентре 2–3 балла. Данных об ощущаемости этих землетрясений, к сожалению, нет. Остальные землетрясения более слабые и зарегистрированы лишь 3–5 сейсмостанциями.

- б) В Предкарпатье отмечено четыре события энергетического класса K_P =5.5÷7.8, суммарная сейсмическая энергия которых составляет ΣE =6.52·10⁸Дж. Очаги этих землетрясений расположены в земной коре на глубине h=2 κm . Наиболее сильное из них зарегистрировано 27 мая в 21 μ 56 мин с K_P =7.8 и магнитудой MSH=1.4 в районе города Дрогобыч Львовской области. В октябре и ноябре зарегистрировано три слабых события возле с. Ясениця-Сильна Дрогобычского района Львовской области, которые расположены в 6 κm на северо-запад от города Борислав и в 12 κm севернее города Схидница (2 октября в 23 μ 05 κ 05 κ 06.2, 21 ноября в 23 μ 28 κ 06.2 и 26 ноября в 04 μ 01 κ 01 κ 01 κ 05 κ 06.2 и 26 ноября в 04 κ 01 κ 01 κ 05 κ 06.2 и 26 ноября в 04 κ 01 κ 01 κ 05 κ 06.2 и 26 ноября в 04 κ 01 κ 06 κ 07 κ 08 κ 08 κ 08 κ 09 κ 09
- в) В Восточной Венгрии зарегистрировано лишь одно событие 13 марта в 03 u 44 мин с KD=7.7.
- Район №2. Вранча. В сейсмоактивном районе Вранча в Румынии сетью сейсмических станций Украины зарегистрировано 28 землетрясений с K_P =8.1÷14.3, суммарная сейсмическая энергия которых составляет ΣE =2.11·10¹⁴Дж. При определении координат очагов этих землетрясений были учтены данные сейсмических станций Румынии, Словакии, Венгрии, Польши, Молдовы и Крыма. Сейсмическими станциями Украины зарегистрировано одиннадцать землетрясений, которые ощущались населением на территории Румынии.
- а) горы Вранча всего отмечено 18 землетрясений. Их выделившаяся суммарная энергия составляет $\Sigma E=1.06\cdot 10^{13} \mbox{Д} \mbox{ж}$. Очаги сосредоточены в зоне глубокофокусных землетрясений в горном массиве Вранча на глубине h=80-160 км.
- б) Предкарпатский прогиб представлен 9 землетрясениями. Их суммарная сейсмическая энергия равна $\Sigma E=2.01\cdot10^{14}$ Дж. Эпицентры этих землетрясений расположены в земной коре. Наиболее сильное землетрясение произошло 22 ноября в районе Фокшан с интенсивностью I=6 баллов. Подземные толчки были такой силы, что их ощущали во многих городах Румынии, Болгарии. На территории Молдовы землетрясение ощущалось в г. Кишиневе с интенсивностью I=4 балла, а в городах Кагуле, Леово с интенсивностью I=4-5 баллов. На Украине землетрясение ощущалось населением в Одесской области, а также в городах Черновцы, Николаев, Херсон, Днепропетровск. Особенно ощущали подземные толчки на верхних этажах

высотных зданий: раскачивались и звенели люстры, слышался звон посуды, скрип мебели.

в) Румыния-Мунтения, район Браила. Здесь отмечено одно землетрясение 2 октября в 09 ч 19 мин с K_P =10.0 и магнитудой MSH=3.0. Эпицентр расположен в земной коре. Землетрясение ощущалось населением Румынии с интенсивностью I=2 балла.

Район №5. Буковина.

В этом районе зарегистрировано 21 землетрясение с суммарной энергией $\Sigma E=2.51\cdot 10^9 \mbox{Д} \mbox{ж}$. Регистрация сейсмических событий на территории Подольской возвышенности стала возможной в связи с открытием в 2005 году в этом регионе новых сейсмостанций [12].

В этом году, как и в предыдущие годы, продолжалась регистрация сейсмических событий на территории трёх областей: Черновицкой, Хмельницкой и Винницкой. При обработке и интерпретации цифровых записей использовались данные временных сейсмостанций NDNU1, NDNU2, NDNU3, которые были установлены с апреля по август вблизи Днестровского водохранилища. Наличие этих станций за данный период времени дало возможность надежно зарегистрировать в данном районе сейсмические события и точно определить их координаты.

Кроме того, в Черновицкой области зарегистрировано еще три довольно сильных землетрясения: в районе г. Новоселица 13 февраля в 05 u 14 mun с K_P =8.5, в районе с. Добрыновцы в 01 u 45 mun с K_P =7.7 u в районе г. Черновцы в 15 u 28 mun с u=6.8.

Два события 12 апреля в 15 ч 32 мин с K_P =5.5 и 10 июня в 21 ч 49 мин с K_P =8.0 зарегистрированы вблизи водохранилища в районе с. Куражин Хмельницкой области.

В Винницкой области зарегистрировано три землетрясения: 16 июля с K_P =6.9, 12 августа с K_P =6.3 и 29 августа с K_P =7.1.

- б) Румыния, район Ботошаны. В этом районе зарегистрировано 4 землетрясения с суммарной энергией $\Sigma E=1.09\cdot 10^9 \mbox{\em \mathcal{I}} \mathcal{A} \mathcal{B}$.
- в) Молдова. На границе Украины и Молдовы зарегистрировано одно землетрясение 11 мая в 20 и 22 мин с K_P =8.7 и магнитудой MSH=1.9. Событие

зарегистрировано сейсмическими станциями Карпатского региона. Румынии и Молдовы.

ЗАКЛЮЧЕНИЕ

В 2014 г. сетью сейсмических станций Карпат зарегистрировано 81 землетрясение в диапазоне энергетического уровня K_P =5.0÷14.3. Наибольшее их количество относится к району Закарпатья, зоне Вранча и Буковины. Выделившаяся суммарная энергия составила ΣE =1.33×10¹⁴ \mathcal{A} ж. Отмечено увеличение сейсмической активности глубокофокусной зоны Вранча (Румынии) и в северозападном районе Украины.

Таблица 2.

Каталог землетрясений карпатского региона за 2014 год (Составители: Чуба М.В.*, Прокопишин В.И.*, Стецкив А.Т.*, Нищименко И.М.*, Келеман И.Н.*, Гаранджа И.А.*, Плишко С.М.*, Добротвир Х.В.*, Вербицкая О.Я.*, Давыдяк О.Д.*, Герасименюк Г.А.*, Стасюк М.И.*, Симонова Н.А.**, Бурлуцкая А.М.**, Евдокимова О.В.**)

*Институт геофизики им.С.И.Субботина Национальной Академии наук Украины ** Институт геологии и сейсмологии Академии наук Молдовы

Вр				новен ения	ия		•	инаты ентра		Глуб оча		Kp/n	KD/n	M	агниту	да	Район
месяц	число	h	мин	cons.	δt_0	N _o Φ	δφ	N°V	87	<i>h, км</i>	др, км			MSH	ML	MD	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	9	4	45	57.4	0.1	48.11	0.7	26.48	0.7	6.0		8.7/3	7.8/5	1.9/3		2.1/5	5
1	12	18	26	2.6	0.1	45.54	1.0	26.42	1.1	137.0		10.9/8	10.3/15	3.5/8		3.5/15	2
1	23	6	15	3.8	0.1	45.49	0.8	26.28	0.9	137.6	0.9	12.5/11	11.7/22	4.5/11		4.3/22	2
1	23	16	38	42.7	0.1	45.78	0.7	27.45	0.7	27.0		10.0/5	9.8/8	2.9/5		3.2/8	2
1	27	3	24	52.9	0.1	45.59	0.7	26.73	0.8	19.0	1.4	8.8/1	9.1/3	2.3/1		2.8/3	2
1	29	18	10	45.8	0.1	48.02	0.3	23.07	0.1	3.0		6.2/1	5.9/2	1.1/1	1.1/2	1.0/2	1
2	3	0	26	30.9	0.1	45.70	1.0	26.46	1.1	140.5	1.1	10.2/6	10.8/7	3.4/6		3.8/7	2
2	13	5	14	27.6	0.5	48.22	2.9	26.25	1.8	10.0		8.5/1	7.3/4	1.7/2	1.5/1	1.8/4	5
2	21	1	45	30.3	0.4	48.47	3.9	26.02	1.8	15.0		7.7/1	6.6/3	1.3/2	1.3/1	1.4/3	5
2	24	0	22	53.7	0.1	45.82	1.1	26.63	1.1	109.1	0.8	11.4/16	11.1/23	3.9/16		3.9/23	2
3	6	0	47	13.0	0.1	48.29	0.4	23.11	0.4	2.0		5.6/3	5.6/5	0.8/3	0.9/4	0.9/5	1
3	6	8	33	48.5	0.1	48.27	0.5	23.10	0.4	2.0		6.6/3	6.3/4	1.2/3	1.3/4	1.3/4	1
3	13	3	44	35.6	0.4	48.29	1.2	21.55	1.6	6.0			7.7/7		1.9/6	2.1/7	1
3	16	15	28	57.6	0.4	48.25	3.5	25.93	1.6	21.8	1.4	6.8/2	6.8/4	1.3/3	1.6/2	1.5/4	5

СЕЙСМИЧНОСТЬ КАРПАТ В 2014 ГОДУ

													Пр	одолж	кение	табли	цы 2.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3	26	19	46	26.9	0.2	45.72	1.1	26.58	1.1	153.1	1.6	11.7/7	11.1/23	3.8/6		3.9/23	2
3	29	1	55	15.7	0.1	45.39	0.5	26.30	0.6	154.0	0.7	10.2/15	10.4/21	3.2/14		3.6/21	2
3	29	19	18	5.0	0.1	45.64	1.2	26.46	1.2	135.0		12.5/14	11.7/25	4.5/14		4.3/25	2
4	3	12	38	56.0	0.1	45.57	0.8	26.42	0.8	137.8	0.9	11.7/15	11.6/22	4.0/14		4.2/22	2
4	7	12	59	52.6	0.4	45.55	2.4	26.27	2.4	119.4	2.4	10.1/4	9.9/8	2.8/4		3.3/8	2
4	7	16	47	36.6	0.1	48.25	0.5	23.14	0.5	2.0		6.7/2	6.6/3	1.2/2	1.3/3	1.5/3	1
4	12	15	32	52.0	0.3	48.64	1.1	27.29	0.6	2.0	1.8	5.5/2	5.4/3	0.9/2	0.8/2	0.8/3	5
4	26	18	32	43.5	0.2	45.90	1.3	26.77	1.4	88.3	1.2	9.2/3	9.5/4	2.9/5		3.1/4	2
4	28	0	42	17.5	0.2	48.11	1.0	26.54	0.6	7.0		7.9/3	7.2/10	1.4/3	1.7/1	1.8/10	5
4	29	1	42	45.7	0.1	48.55	0.3	27.30	0.3	2.8	0.8	6.2/4	6.5/4	1.2/4	1.2/4	1.4/4	5
5	11	20	22	0.8	0.1	48.29	0.7	26.68	0.5	5.0		8.7/4	8.1/5	1.9/4	1.6/4	2.3/5	5
5	23	15	30	28.7	0.3	48.22	2.0	23.24	1.0	2.0			6.3/2		1.1/2	1.3/2	1
5	26	8	37	3.0	0.3	48.59	0.4	27.40	0.3	2.4	1.4	6.4/3	6.4/3	1.3/3	1.3/3	1.3/3	5
5	27	21	56	38.5	0.6	49.39	2.9	23.46	1.3	2.0		7.8/2	7.6/4	1.3/2	1.5/2	2.0/4	1
5	28	16	52	32.2		48.55	0.1	27.37	0.1	1.0	0.2	5.1/3	5.1/3	0.6/3	0.6/3	0.6/3	5
6	2	1	2	52.9	0.2	48.52	1.1	23.05	0.6	2.0		5.6/2	5.7/6	0.6/2	0.8/5	0.9/6	1
6	4	2	19	8.3	0.1	48.45	0.7	22.86	0.5	1.8	1.0	5.7/3	5.8/4	0.8/3	0.9/4	1.0/4	1
6	4	8	32	4.9	0.1	48.36	0.5	22.78	0.4	2.0		6.2/2	6.0/4	1.1/3	1.1/3	1.1/4	1
6	4	18	0	33.6	0.2	48.38	1.2	22.79	1.1	2.0		5.4/1	5.4/3	0.8/1	0.8/3	0.8/3	1
6	7	19	41	14.6	0.1	48.39	0.6	22.80	0.5	5.6	0.3	8.0/7	8.2/13	2.0/7	2.2/8	2.3/13	1
6	8	1	37	43.2	0.1	48.43	0.7	22.84	0.5	2.0		6.6/5	6.4/7	1.1/5	1.1/7	1.3/7	1
6	10	20	29	17.1	0.1	48.36	0.6	22.76	0.7	2.0		6.7/4	6.5/6	1.3/4	1.2/6	1.4/6	1
6	10	21	49	38.4	0.1	48.66	0.6	27.32	0.4	1.5	0.6	8.1/4	7.6/8	2.2/4	2.0/4	2.0/8	5
6	30	19	2	35.9	0.3	48.30	1.8	23.35	0.7	2.0		6.5/3	6.5/3	1.1/3	1.3/3	1.4/3	1
7	16	22	32	56.9	0.0	48.56	0.1	27.79	0.3	3.1	0.5	6.9/2	6.4/3	1.3/2	1.1/3	1.3/3	9
7	18	13	50	34.9	0.1	48.59	0.2	27.38	0.2	2.3	0.7		5.6/3		0.9/1	0.9/3	5
7	19	5	3	8.1	0.1	48.60	0.8	27.41	0.5	1.9	0.7	8.6/4	8.5/7	2.4/4	2.3/4	2.5/7	5
7	19	10	51	6.3	0.0	48.59	0.1	27.41	0.0	2.1	0.2	5.7/3	5.7/3	0.9/3	0.8/3	0.9/3	5
7	19	15	10	57.5	0.0	48.59	0.0	27.41	0.0	2.4	0.1	6.0/3	6.0/3	1.2/3	1.1/3	1.1/3	5
7	22	16	17	37.9	0.1	48.55	0.2	27.32	0.7	2.0	1.0	5.8/3	5.9/3	1.0/3	1.2/3	1.1/3	5
8	9	1	39	26.1	0.1	45.79	0.5	27.64	0.6	14.0		9.7/9	9.8/9	2.6/10		3.2/9	2
8	9	18	3	21.2	0.2	45.60	1.3	26.44	1.2	137.8	1.5		10.0/2			3.3/2	2
8	12	4	0	41.5	0.1	48.64	0.3	27.42	0.2	2.8	0.6	6.3/3	6.6/5	1.1/3	1.4/3	1.5/5	5
8	19	9	4	39.8	0.1	45.80	0.8	26.50	0.9	145.6	0.9	9.6/11	9.7/14	2.9/10		3.2/14	2
8	24	7	12			45.65										3.7/12	2
8	29	21	0	39.0	0.2	48.86	1.5	27.52	1.8	2.0	2.5	7.1/2	6.8/4	1.3/2	1.4/2	1.6/4	9
9	10	19	45	56.3	0.1	45.63	0.8	26.50	0.8	121.6	0.9	12.4/15	11.7/21	4.4/14		4.3/21	2
10	2	9	19	36.9	0.1	45.23	0.6	27.97	0.6	2.0		10.0/4	9.9/6	3.0/6		3.3/6	2
10	2	23	5	22.3	0.3	49.35	1.0	23.38	0.8	2.0			6.2/2			1.2/2	1
10	6	4	55	18.4	0.2	48.25	0.8	23.55	0.9	4.5	0.4	8.0/7	7.6/12	1.6/8	1.8/8	2.0/12	1

Вербицкий С. Т., Пронишин Р. С., Прокопишин В. И., Стецкив А. Т., Чуба М. В., Нищименко И. М., Келеман И. Н.

													Пр	одолж	кение	табли	цы 2.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
10	18	23	0	36.9	0.3	47.88	1.5	26.33	0.7	2.0	2.4		6.6/4		1.5/3	1.5/4	5
10	24	5	23	32.9	0.2	48.40	1.5	22.91	1.0	2.0		6.8/3	6.4/4	1.2/3	1.3/3	1.3/4	1
10	30	21	28	3.7	0.6	47.79	2.8	26.90	2.0	3.0		8.7/1	7.6/4	2.0/2	1.8/2	2.0/4	5
10	31	16	3	32.4	0.3	48.30	0.9	23.09	1.0	10.1	1.8	7.2/7	7.1/10	1.6/7	1.6/6	1.7/10	1
11	1	2	21	30.7	0.1	48.42	0.5	23.31	0.2	2.0			5.2/2		0.6/2	0.7/2	1
11	3	13	9	58.4	0.1	45.58	0.9	26.42	1.1	129.0		11.2/5	10.6/17	3.9/6		3.7/17	2
11	15	2	42	24.8	0.2	48.03	1.1	23.04	0.6	13.9	0.9	8.9/9	8.2/11	2.3/9	2.5/9	2.4/11	1
11	15	3	2	0.7	0.2	48.01	1.6	23.03	0.4	12.9	1.1	7.5/3	7.5/5	1.6/3	1.9/3	1.9/5	1
11	15	3	15	7.4	0.1	48.00	0.4	23.04	0.5	9.8	0.9	8.9/6	8.6/15	2.3/6	2.4/8	2.6/15	1
11	15	5	47	10.9	0.1	48.01	0.8	23.04	0.4	11.8	0.8		6.4/3		1.4/3	1.4/3	1
11	15	19	41	57.5	0.3	48.00	1.5	23.03	0.6	12.0			5.7/2		1.0/3	1.0/2	1
11	21	23	28	37.8	0.4	49.33	1.4	23.32	1.9	2.0		5.5/1	6.2/3	0.8/1	0.7/1	1.2/3	1
11	22	0	26	33.6	0.3	48.01	1.6	23.05	0.6	13.0			5.8/2		0.7/2	1.0/2	1
11	22	19	14	16.3	0.1	45.87	0.6	27.16	0.6	46.8	1.0	14.3/8	12.3/14	4.9/7		4.6/14	2
11	22	20	30	55.8	0.1	45.86	0.7	27.17	0.6	36.0		9.3/2	10.1/3	1.9/1		3.4/3	2
11	23	2	21	5.7	0.1	45.88	1.2	27.19	0.9	33.0		8.1/2	8.3/2	2.0/3		2.4/2	2
11	25	1	52	25.1	0.1	45.86	0.6	27.14	0.6	35.0	1.3	10.7/10	10.0/15	3.0/10		3.3/15	2
11	25	3	51	21.4		48.45	0.2	23.29	0.1	2.0			5.7/3		0.8/2	0.9/3	1
11	26	4	1	33.5	0.7	49.34	2.6	23.35	2.3	2.0			5.4/2			0.8/2	1
11	26	10	49	52.4	0.1	48.01	0.5	23.04	0.5	13.0	0.8	8.9/8	8.3/12	2.3/8	2.3/9	2.4/12	1
12	1	15	38	50.3	0.2	45.88	1.2	26.76	1.2	77.0	1.0	9.4/3	9.7/3	3.0/5		3.2/3	2
12	7	21	4	3.9	0.1	45.91	0.7	27.18	0.7	45.6	1.1	12.1/6	11.4/21	4.0/7		4.1/21	2
12	9	23	56	30.0	0.2	48.04	1.6	23.04	0.6	14.0			5.6/1		1.0/2	0.9/1	1
12	12	8	25	38.2	0.2	45.79	1.0	26.66	1.2	126.7	1.2	9.8/7	9.6/9	3.0/6		3.1/9	2
12	14	17	24	47.4	0.1	45.61	0.7	27.10	0.6	13.1	1.2	9.4/5	9.6/7	2.9/5		3.1/7	2
12	16	16	0	1.6	0.3	48.03	1.7	23.02	0.8	15.1	1.3	7.1/2	6.9/5	1.3/2	1.7/3	1.6/5	1
12	24	6	18	41.8	0.2	45.73	1.7	26.63	1.9	138.6	1.6	9.4/1	9.7/5			3.1/5	2

- 12.01 ощущалось в Румынии с интенсивностью Ik = 2 —3 балла.
- 23.01 ощущалось в Румынии с интенсивностью Ik = 3 балла.
- 24.02. ощущалось в Румынии с интенсивностью Ik = 3 балла.
- 26.03 ощущалось в Румынии с интенсивностью Ik = 3 балла.
- 29.03– ощущалось в Румынии с интенсивностью Ik = 3 балла.
- 29.03 ощущалось в Румынии с интенсивностью Ik = 4 балла в г.Кишеневе Ik = 3 балла.
- 24.08 ощущалось в Румынии с интенсивностью Ik = 4 балла.
- 10.09 ощущалось в Румынии с интенсивностью Ik = 4 балла.
- 02.10 ощущалось в Румынии с интенсивностью Ik = 2 балла.
- 15.11 ощущалось в Закарпатье в с.Тросник с интенсивностью Ik = 2-3 балла.
- 22.11 ощущалось в Румынии с интенсивностью Ik = 6 баллов, в г.Кишиневе Ik = 4 5 баллов.
- 07.12 ощущалось в Румынии с интенсивностью Ik = 4 балла.

Таблица 3. Подробные данные о Карпатских землетрясениях в 2014 г.

Стан-	Δ,	Фаза		Время		T,	-	А , мки	ı	K _P	KD	D,c	1	Магн	итуды	
ция	км	1 434	ч	м	С	c		E-W	Z		112	2,0			MPV	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
				№ 1.9 яг	варя.	Румы	ния,	район	і Бот	ошан	ы.					
			0)=4ч 45 <i>ми</i> н												
				MD=2.1(5)); $Kp=8$	3.7(3);	KD=	7.8(5)	; MSI	H=1.9	0(3);					
CHRU	47	eP	4	46	6.7						7.5	78				1.9
		Pm	4	46	7.3	0.29			0.05	8.4						
		iS	4	46	12.1											
		Sm	4	46		0.14	0.40	0.00					1.8			
KMPU	50	+iP	4	46	7.7						7.8	89				2.1
		iS	4	46	14.0											
NDNU	85	-iP	4	46	13.3						8.1	90				2.3
		Pm	4	46		0.07			0.08	8.7						
		iS	4	46	23.4	0.11	0.10	0.00					1.0			
VCV	108	Sm -D	4	46		0.11	0.18	0.09			7.8	00	1.9			2.1
KSV ë	108	Pm	4 4	46 46	16.9	0.13			0.03	9.1	7.8	88				2.1
е		iS	4	46 46	29.5	0.13			0.03	9.1						
		Sm	4	46		0.12	0.03	0.27					2.1			
HORU	123		4	46	19.3	0.12	0.03	0.27			7.9	94	2.1			2.2
поко	123	iS	4	46	33.7						1.5	,				2.2
SORM	139		4	46	21.4											
		S	4	46	37.6											
STNU	161		4	46	25.0											
		iS	4	46	44.4											
RAKU	172	eS	4	46	47.1											
MILM	220	P	4	46	32.2											
		S	4	46	56.6											
MORS	222		4	46	58.4											
MEZ	224		4	46	59.5											
NSLU	225	eS	4	46	59.7				_							
				№ 2. 12												
				=18ч 26миг D=3.5(16),												
GIUM	140	D	18	26	28.9	,) (0 <i>)</i> ,	KD^-	10.5(1	(O), IV.	1311—	3.3(0)	,				
LEOM	175		18	26	31.8											
KIS	246		18	26	39.4						11 2	240				4.0
KIS	240	Pm	18	26		0.50			0.23	11.5	11.2	240				7.0
		S	18	27	5.6	0.50			0.23	11.5						
		Sm	18	27		0.80	9.70									
KSV	325	ePn	18	26	48.8						10.3	268				3.5
•		eSn	18	27	23.5											
RAKU	325	ePn	18	26	49.1						10.1	352				3.4
		eSn	18	27	25.0											
KMPU	336	ePn	18	26	50.6						10.2	297				3.4
		eSn	18	27	27.1											
NDNU	347	ePn	18	26	50.7						10.1	327				3.4

									Ппс	лопа	кение та	блицы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13 14	
1	Pm	18	26		0.30	O	,		10.7	12	13 17	13 10 17
	Sm	18	27	-	0.40	0.10	0.31	0.10	10.7		3.7	
NSLU	371 eP	18	26	54.1	0.40	0.10	0.51			10.1		3.4
NSLO	eSn	18	27	35.1						10.1	320	J. T
	Sm	18	27		0.30	0.10	0.10				3.2	
KORU	383 Pn	18	26	56.4		0.10	0.10			10.1		3.4
KOKO	eSn	18	27	37.1						10.1	301	5.4
TRSU	387 ePn	18	26	56.2								
MEZ	397 ePn	18	26	57.8						10.2	321	3.4
IVILL	Pm	18	27		0.50			0.02	10.0	10.2	321	5.4
	eSn	18	27	39.7				0.02	10.0			
	Sm	18	27		0.60	0.04	0.06				3.1	
HORU	408 ePn	18	26	58.1	0.00	0.04	0.00			10.1		3.4
поко	eSn	18	27	42.4						10.1	327	э.т
BERU	414 ePn	18	27	0.3						10.1	319	3.4
MUKU	430 ePn	18	27	1.2						10.1		3.4
SEV	582 P	18	27	17.1						10.1		3.6
DL V	Pm	18	27		0.33			0.02	10.4	10.5	100	3.0
	Sm	18	28			0.00	0.02	0.02	10.7		3.5	
SIM	606 P	18	27	21.2		0.00	0.02			10.7		3.7
DIIVI	Pm	18	27		0.30			0.05	11 3	10.7	172	5.7
	Sm	18	28		0.85	0.04	0.12	0.05	11.5		3.6	
YAL	619 P	18	27	22.3		0.01	0.12				5.0	
1112	S	18	28	24.8								
ALU	634 P	18	27	24.7						10.7	192	3.7
	Pm	18	27		0.36			0.02	10.7			
	S	18	28	28.3								
	Sm	18	28		0.42	0.04	0.03				3.5	
SUDU	676 P	18	27	29.8						10.5	150	3.6
	Pm	18	27		0.61			0.03	11.4			
	Sm	18	28	37.6	0.60	0.03	0.09				3.7	
FEO	702 P	18	27	33.9								
	Pm	18	27	34.8	0.63			0.03	11.1			
	S	18	28	44.2								
	Sm	18	28	44.4	0.47	0.04	0.04				3.6	
		№	3. 23 январ	я. К	арпа	гы, р	айон	Вран	ча.			
			мин 3.8с; φ							км;		
			(23); $Kp = 12$									
LEOM	188 P	6	15	34.6			(),			(),		
MILM	252 P	6	15	41.9								
KIS	258 P	6	15	42.7						12.8	450	4.9
	Pm	6	15		0.40			6.90	13.3			
	-iS	6	16	11.0								
	Sm	6	16		0.50		31.40					
	m	6	16	11.5	3.40		0.50					
CHRU	314 +iP	6	15	49.0						11.7	579	4.3
	Pm	6	15	49.7	0.50			0.82	12.9			
	iS	6	16	23.7								
	Sm	6	16	24.7	0.90	1.42	6.28				4.9	
RAKU	325 iP	6	15	50.6						12.1	689	4.5
	Pm	6	15	51.4	0.80			4.41	12.8			

СЕЙСМИЧНОСТЬ КАРПАТ В 2014 ГОДУ

				Продолжение таблицы 3.
1	2 3	4	5	6 7 8 9 10 11 12 13 14 15 16 17
, <u> </u>	iS	6	16	26.0
	Sm	6	17	1.3 2.25 2.43 0.08 4.5
KSV	328 +iP	6	15	50.6 11.1 442 4.0
	Pm	6	15	52.0 0.20 1.16 12.7
	+iS	6	16	26.7
	Sm	6	16	32.2 0.30 4.32 3.27 4.8
KMPU	342 -iP	6	15	52.2 11.7 587 4.3
	iS	6	16	28.9
NDNU	355 +iP	6	15	53.6 11.6 554 4.2
	Pm	6	15	53.9 0.30 1.56 12.9
	+iS	6	16	29.4
NICETI	Sm	6	16	30.5 0.35 1.16 3.94 4.8
NSLU	370 +iP	6	15	55.4 11.6 558 4.2 56.8 0.50 0.77 12.2
	Pm	6	15	
	iS	6	16	36.0
KODII	Sm	6	17	3.4 1.25 1.11 0.13 4.2
KORU	381 -iP	6	15	57.1 11.7 572 4.3
CTNIII	eS	6	16	38.3
STNU	383 P	6	15	57.6 11.7 573 4.3
TDCII	eS	6	16	38.0
TRSU	385 iP	6	15	57.3 11.8 617 4.4
MEZ	eS	6	16	38.5
MEZ	397 -iP	6	15	59.4 11.5 528 4.2 0.7 0.60 0.73 12.3
	Pm iS	6 6	16 16	41.5
DEDII	Sm	6	16	
BERU	412 -iP	6	15	59.0 11.7 572 4.3 44.7
HORU	eS 415 iP	6 6	16 16	0.8 11.7 580 4.3
поко	iS		16	4.5 45.3
MUKU	428 -iP	6 6	16	2.6 11.6 556 4.2
MUKU	420 -1F eS	6	16	47.7 41.0 330 4.2
MORS	444 -iP	6	16	5.3 11.7 573 4.3
MOKS	eS	6	16	51.7
UZH	462 -iP	6	16	6.7 11.5 538 4.2
UZII	eS	6	16	55.4
SHIU	470 -iP	6	16	8.2 11.8 616 4.4
SIIIC	eS	6	16	57.3
LVV	510 iP	6	16	12.6 11.6 546 4.2
L.,	Pm	6	16	13.4 0.70 0.65 12.8
	iS	6	17	6.4
	Sm		17	15.5 1.90 0.75 1.16 4.5
SEV		6	16	20.7 12.1 320 4.5
22.	Pm	6	16	25.3 0.20 0.04 12.0 4.3
	eS	6	17	19.6
	Sm	6	17	24.6 0.38 0.35 0.14 4.5
SIM	617 eP	6	16	25.3 11.7 377 4.3
-	eS	6	17	25.4
	Sm	6	17	29.1 0.32 0.26 0.36 4.6
YAL	629 eP	6	16	25.4
	eS	6	17	26.3
ALU	644 Pm	6	16	25.3 0.31 0.03 11.8

101

				Продолжение таблицы 3	.
1	2 3	4	5	6 7 8 9 10 11 12 13 14 15 16 17	
	eР	6	16	27.9 11.2 293 4.	0
	eS	6	17	30.3	
	Sm	6	17	37.8 0.39 0.10 0.24 4.3	
SUDU	686 Pm	6	16	25.3 0.42 0.05 12.3	
	eР	6	16	33.2 11.2 270 4.	0
	eS	6	17	40.9	
	Sm	6	17	48.5 0.34 0.34 0.02 4.5	
		№ 4.	23 январ	ря. Румыния, район Фокшаны.	
		$0 = 164 \ 36$	8мин 42.7	7c; $\varphi = 45.78^{\circ}N$; $\lambda = 27.45^{\circ}E$; $h = 27 \text{ км}$;	
				p=10.0(5); $KD=9.8(8)$; $MSH=2.9(5)$;	
LEOM	99 P	16	39	0.2	
KIS	172 P	16	39	11.0 10.1 140 3.	4
	Pm	16	39	11.5 0.50 0.13 10.2	
	S	16	39	32.0	
	Sm	16	39	32.3 0.50 1.60	
	m	16	39	35.0 0.50 1.60	
CHRU	303 eS	16	39	57.7	
	Sm	16	40	14.8 0.36 0.18 0.61 3.1	
NDNU	313 iP	16	39	26.5 9.3 188 3.	0
	Pm	16	39	27.7 0.25 0.05 10.8	
	iS	16	39	60.0	
	Sm	16	40	13.1 0.38 0.18 0.70 3.2	
KMPU	319 eP	16	39	26.9 9.6 213 3.	1
	iS	16	39	58.8	
KSV	335 eP	16	39	30.4 9.5 199 3.	0
	Pm	16	39	43.3 1.20 0.04 10.3	
	eS	16	40	5.0	
	Sm	16	40	22.5 0.63 0.04 0.23 2.7	
HORU	390 eP	16	39	38.1 9.7 227 3.	2
	eS	16	40	16.8	
STNU	395 eS	16	40	19.3	
MORS	459 eP	16	39	47.1 9.5 199 3.	0
	eS	16	40	33.4	
SEV	508 P	16	39	50.7 10.1 134 3.	4
	Pm	16	39	51.5 0.34 0.00 8.9	
	S	16	40	43.9	
	Sm	16	40	44.7 0.30 0.01 0.00 2.7	
SUDU	598 P	16	40	3.4 10.1 140 3.	4
	Pm	16	40	8.3 0.36 0.01 9.9	
	S	16	41	6.3	
	Sm	16	41	11.9 0.37 0.00 0.00 3.0	
		№ 5	5. 27 янва	варя. Румыния, район Вранча.	
		$0 = 34 \ 24$	мин 52.9с	$9c; \varphi = 45.59$ °N; $\lambda = 26.72$ °E; $h = 19 \text{ км};$	
				p=8.8(1); KD=9.1(3); MSH=2.3(1);	
GIUM	116 P	3	25	11.8	
	S	3	25	26.5	
SORM	309 P	3	25	36.0	
KMPU	331 eP	3	25	39.8 9.0 160 2.	8
	eS	3	26	13.4	
NDNU	338 eP	3	25	40.4 9.3 160 3.	0
	Pm	3	25	41.4 1.80 0.02 8.8	

				Продолжение таблицы	3.
1	2 3	4	5		17
	eS	3	26	19.3	
	Sm	3	26	24.1 1.50 0.10 0.01 2.3	
HORU	404 eP	3	25		2.7
	eS	3	26	34.0	
		№ 6. 2º	9 января	я. Закарпатье, район с.Тросник.	
				8c; $φ = 48.02$ °N; $λ = 23.07$ °E; $h = 3$ κм;	
	M			(1); KD=5.9(2); ML=1.1(2); MSH=1.1(1);	
TRSU	12 +iPg	18	10		1.0
1100	Pm	18	10	49.2 0.10 0.12 6.2	1.0
	+iSg	18	10	50.0	
	Sm	18	10	50.2 0.10 0.08 0.50 1.1	
	m	18	10	50.3 0.13 0.17 1.1	
KORU	16 +ePg	18	10		1.1
110110	+eSg	18	10	51.4	
	m	18	10	51.7 0.15 0.11 1.1	
NSLU	35 eSg	18	10	57.5	
	C	№ 7	. 3 февра	аля. Карпаты, район Вранча.	
				$; \varphi = 45.71$ °N; $\lambda = 26.46$ °E; $h = 140.5 \text{ km};$	
				=10.2(6); $KD=10.8(7)$; $MSH=3.4(6)$;	
LEOM	162 Pn	0	26	59.7	
MILM	225 Pn	0	27	5.9	
KIS	231 P	0	27	6.5	
CHRU	291 eP	0	27		3.9
	Pm	0	27	14.0 0.60 0.12 10.8	
	iS	0	27	45.3	
	Sm	0	27	48.0 1.00 0.20 0.80 4.0	
KSV	309 -iP	0	27	16.3	
RAKU	312 + iP	0	27	15.8	
KMPU	318 +iP	0	27	16.0	
	iS	0	27	49.6	
NDNU	329 -iP	0	27		3.9
	Pm	0	27	17.5 0.30 0.28 10.5	
	iS	0	27	51.2	
	Sm	0	27	51.9 0.70 0.10 0.65 3.9	
NSLU	359 +iP	0	27	21.9	
STNU	366 +iP	0	27	22.9	
KORU	372 +iP	0	27	23.1	
TRSU	376 +iP	0	27	24.1	2.0
MEZ	384 -iP	0	27		3.9
	Pm	0	27	26.9 1.10 0.04 10.0	
	iS Sm	0	28	6.8	
HODII	Sm	0	28 27	11.2 1.10 0.11 0.03 3.3 24.7 11.1 441	4.0
HORU	390 +iP	0		24.7 11.1 441 4 5.2	+.0
BRIU	eS 392 -iP	$0 \\ 0$	28 27	25.1	
BERU	404 -iP	0	27	26.4	
MUKU	418 -iP	0	27	28.6	
MORS	428 -iP	0	27	30.7	
UZH	453 eP	0	27	32.5	
SHIU	456 eP	0	27	32.8	
STZU	468 eP	0	27		4.0
		-		1112 10 1	

								Про	долж	кение т	аблицы 3.
1	2 3	4	5	6 7	8	9	10	11	12	13 14	
L	Pm	0	27	36.7 0.80			0.04	10.4		· ·	· · · · · · · · · · · · · · · · · · ·
	eS	0	28	25.6							
	Sm	0	28	33.8 1.10	0.08	0.10				3.4	
SEV	581 eP	0	27	45.3					9.9	180	3.3
	Pm	0	27	45.6 0.31			0.00	9.6			
	eS	0	28	42.9							
	Sm	0	28	44.7 0.50	0.01	0.02				3.0	
SUDU	674 eP	0	28	1.9					10.1	180	3.4
	Pm	0	28	2.5 0.63			0.01	9.9			
	eS	0	29	8.0							
	Sm	0	29	8.5 0.53	0.01	0.01				3.0	
		№ 8. 13 ф	евраля. Ч	ерновицка	я обл	., р-н	г.Но	восе	лица		
				$c; \varphi = 48.22^{\circ}$							
				(KD=7.3)						?);	
KMPU	42 +iP	5	14	36.2					7.7	83	2.0
	iS	5	14	41.6							
KSV	88 eS	5	14	53.5							
	Sm	5	14	54.4 0.17	0.03	0.31				2.1	
NDNU	93 -iP	5	14	44.3					7.6	81	2.0
	m	5	14	44.6 0.12			0.03				1.5
	Pm	5	14	44.7 0.05			0.04	8.5			
	iS	5	14	55.4							
	Sm	5	14	55.9 0.06	0.05	0.04				1.4	
HORU	112 eP	5	14	46.5					7.2	67	1.8
	iS	5	15	1.1							
STNU	140 eP	5	14	51.6					6.7	52	1.5
	eS	5	15	9.2	_						
				ерновицкая						I.	
				c; $\varphi = 48.47^{\circ}$						2).	
L/MDI I	34 +iP			(); KD=6.6(.)), WII	1.5	(1), IV	1311-			1.7
KMPU	34 +1P iS	1 1	45 45	38.1					7.0	60	1.7
VCV	72 eS	1		42.7							
KSV	Sm	1	45 45	51.7 56.7 0.65	0.01	0.04				1.1	
HORU	88 -iP	1	45	45.9	0.01	0.04			6.5	1.1 48	1.4
HORU	iS	1	45	56.7					0.5	40	1.4
NDNU	100 -iP	1	45	48.0					6.2	42	1.2
NDNO	Pm	1	45	48.3 0.07			0.01	7.7	0.2	72	1.2
	iS	1	45	59.6			0.01	/ • /			
	Sm	1	46	0.0 0.13	0.05	0.03				1.4	
	m	1	46	0.7 0.24	0.03	0.03	0.02			1	1.3
STNU	115 eS	1	46	5.2			0.02				1.5
		.№ 1		раля. Карпа	аты, і	эйон	ı Bna	нчя.			
				$\varphi=45.82$ °N					км:		
	MD=			KD=11.1(3.7(1);	
GIUM	128 P	0	23	16.6			,				
LEOM	144 P	0	23	17.8							
KIS	213 -iP	0	23	26.0					11.7	270	4.3
IXIO	Pm	0	23	26.5 0.84			0.60		11./	210	т.Э
		0	23	26.5 0.60			0.84	11.0			3 7
	Pm	U	23	20.5 0.00			0.04				3.7

СЕЙСМИЧНОСТЬ КАРПАТ В 2014 ГОДУ

				Продолжение таблицы 3.
1	2 3	4	5	6 7 8 9 10 11 12 13 14 15 16 17
	iS	0	23	48.0
	Sm	0	23	48.5 0.50 4.00 5.90 4.0
KSV	302 -iP	0	23	36.0 11.0 414 3.9
	Pm	0	23	37.5 0.30
	iS	0	24	
	Sm	0	24	9.4 28.0 0.50 0.88 0.55 36.3 11.1 436 4.0
KMPU	306 -iP	0	23	36.3 11.1 436 4.0
	iS	0	24	7.7
RAKU	309 iP	0	23	37.1 11.0 421 3.9
	Pm	0	23	40.0 0.90 0.57 11.2
	iS	0	24	10.9
	Sm	0	24	22.6 1.25 0.36 0.47 3.9
NDNU	314 -iP	0	23	37.7 11.3 476 4.0
	Pm	0	23	38.2 0.20 0.49 11.4
	iS	0	24	9.1
	Sm	0	24	15.4 0.45 0.85 0.41 4.1
NSLU	358 +iP	0	23	15.4 0.45 0.85 0.41 4.1 43.0 11.1 436 4.0
1,220	Pm	0	23	44.2 0.40 0.53 11.5
	eS	0	24	21.9
	Sm	0	24	41.3 0.90 0.19 0.55 4.0
STNU	360 +iP	0	23	43.2 11.2 450 4.0
211.0	iS	0	24	22.2
KORU	371 +iP	0	23	44.5 11.1 437 4.0
Horto	eS	0	24	25.2
TRSU	377 iP	0	23	45.3 11.1 443 4.0
1100	Pm	0	23	46.8 0.80 0.50 11.4
	iS	Ö	24	26.2
	Sm	0	24	
HORU	378 iP	0	23	38.7 1.10 0.17 0.04 3.5 45.6 11.0 418 3.9
mone	iS	0	24	23.9
MEZ	381 iP	0	23	46.3 11.0 415 3.9
WILL	Pm	0	23	48.3 1.00 0.26 11.4
	iS	0	24	27.3
	Sm	0	24	43.7 1.45 0.41 0.21 3.9
BRIU	391 +iP	0	23	47.5 11.3 470 4.0
Ditto	Pm	$\overset{\circ}{0}$	23	47.7 0.30 0.33 11.5
	eS		24	29.5
	Sm	0	25	5.3 1.60 0.44 0.48 4.0
BERU	404 -iP	0	23	48.7 10.9 392 3.8
DLICO	eS	0	24	31.7
MUKU	418 -iP	0	23	50.7 11.0 422 3.9
MONO	eS	0	24	35.5
MORS	422 iP	0	23	50.8 11.1 425 3.9
111010	iS	0	24	35.6
SHIU	451 -iP	0	23	55.2 11.2 460 4.0
51110	Pm	0	23	59.6 1.90 0.03 10.9
	eS	0	24	42.1
		0		

105

								Про	кпоп	кение т	аблицы :	3.
1	2 3	4	5	6	7	8	9	10 11	12	13 14		7
	Sm	0	24	57.6	1.20	0.11	0.20			3.7		
UZH	453 +iP	0	23	55.1					10.9	404	3	.9
	Pm	0	23		0.80			0.04 10.8				
	eS	0	24	42.2								
	Sm	0	25			0.07	0.13			3.5		
STZU	466 iP	0	23	56.0					11.1	428	3	.9
	Pm	0	23		1.10			0.36 11.7				
	eS	0	24	45.3								
	Sm	0	24			0.22	0.27			3.9		
LVV	485 +iP	0	23	59.3		*			11.1			.0
2.,,	Pm	0	24		0.40			0.27 11.9			•	••
	iS	ő	24	49.2				0.27 11.7				
	Sm	0	24			0.34	0.29			4.0		
SEV	571 +iP	0	24	6.3		0.54	0.27		10.8			.8
SE V	Pm	0	24		0.42		0.17	11.7	10.6	217	3	.0
	iS	0	25	1.5			0.17	11./				
	Sm	0	25 25			0.07	Λ 10			4.2		
CIM		0	23 24	9.6		0.07	0.18		11.0			0
SIM	592 eP		24						11.0	230	3	.9
	Pm	0			0.30			0.01 11.9				
	iS	0	25	7.9		0.10	0.20			2.0		
37 A T	Sm	0	25			0.10	0.29			3.9		
YAL	608 eP	0	24	11.5								
A T T T	S	0	25	10.4					10.7	200	2	_
ALU	621 +iP	0	24	13.5					10.7	208	3	.7
	Pm	0	24		0.38			0.02 11.0				
	eS	0	25	20.0								
	Sm	0	25			0.06	0.08			4.0		
SUDU	662 eP	0	24	17.9					10.8	219	3	.8
	Pm	0	24		0.39			0.03 11.8				
	iS	0	25	22.3								
	Sm	0	25			0.21				4.3		
			№ 11. 6 март									
			0ч 47мин 13с (5): К 5 (6)						0(2).			
KODII	15 :D=	MD=0.90	(5); Kp=5.6(3 47	3); KD 15.7)); ML	=0.9(4	ı), MSH=0.8		31	0).9
KORU	15 -iPg	0	47 47		0.20			0.11	5.6	31	1.0	1.9
	m -eSg	0	47	18.1	0.20			0.11			1.0	
TRSU	24 -ePg	0	47	17.3					5.8	34	1	.0
11100	Pm	Ö	47		0.10			0.06 5.5	3.0	5.		••
	m	0	47		0.15			0.03			0.8	
	-eSg	0	47	21.2								
	Sm	0	47			0.05	0.11			0.9		
NSLU	28 ePg	0	47	18.1					5.6	32	0	0.9
	Pm	0	47		0.10			0.01 5.6				
	eSg	0	47	22.4						_		
	Sm	0	47			0.07	0.01	0.04		0.8		
DEDII	m 25 - D-	0	47 47		0.20			0.04	5.2	27	0.9	. 7
BERU	35 ePg	0	47	19.1					5.3	27	0).7

										Про	долж	кение	е табли	цы 3.
1	2	3	4	5	6	7	8	9	10	11	12			16 17
		eSg	0	47	24.5		· ·							
MUKU	36	ePg	0	47	20.0						5.4	28		0.8
		Pm	0	47		0.20			0.01	5.7				
		+eSg	0	47	25.4									
		Sm	0	47	26.1	0.30	0.03	0.05					0.8	
		m	0	47		0.20			0.02				0.7	
MEZ	39	eSg	0	47	26.1									
STZU		eSg	0	47	42.2									
		0	№ 12	. 6 марта	Зак	аппа	TLE.	п-н г	Ипп	iara				
				3мин 48.50										
		MD		Kp = 6.6(3)	,							3(3);		
KORU	13	-iPg	8	33	51.2		/ .		() /		6.0	37		1.1
		eSg	8	33	52.7									
		m	8	33		0.40			0.33				1.4	
TRSU	22	ePg	8	33	52.8						6.5	49		1.4
		Pm	8	33		0.15			0.16	6.7				
		m	8	33		0.15			0.12				1.3	
		eSg	8	33	55.4									
		Sm	8	33		0.20	0.12	0.29					1.3	
NSLU	28	ePg	8	33	53.8		0.12	0.27			6.3	43		1.3
1,020		Pm	8	33		0.10			0.03	6.3	0.0			1.0
		eSg	8	33	57.7				0.05	0.5				
		Sm	8	33		0.20	0.17	0.08					1.2	
		m	8	34		0.20	0.17	0.00	0.12				1.4	
BERU	34	ePg	8	33	54.8				0.12				1.7	
DLICO	51	eSg	8	33	59.7									
MUKU	37	ePg	8	33	55.7						6.4	45		1.3
MORO	51	Pm	8	33		0.10			0.07	6.8	0.1	13		1.5
		eSg	8	34	0.9				0.07	0.0				
		Sm	8	34		0.30	0.17	0.01					1.3	
		m	8	34		0.20	0.17	0.01	0.04				1.1	
MEZ	41	eSg	8	34	2.3				0.04				1.1	
STZU		eSg	8	34	16.6									
5120	70	CDg		2 13. 13 ма			FAILL	og Re	HENT					
				2 13. 13 ма мин 35.6с							v.M.			
				MD=2.0(7)	,						ĸm,			
UZH	66	ePg	3	44	47.2		(//, 1		(0)	,	7.2	68		1.8
OZII	00	eSg	3	44	56.2						7.2	00		1.0
		m	3	44		0.10			0.43				2.4	
BERU	Ω1	ePg	3	44	50.4				0.73		7.4	75	۷.٦	1.9
DERU	01	eSg	3	45	1.0						/ . 1	13		1.9
		m	3	45		0.10			0.06				1.6	
MIIIZII	96								0.00		7.5	70	1.0	2.0
MUKU	00	ePg	3	44 45	51.0						7.5	78		2.0
TRSU	106	eSg ePg	3		2.8						Q 1	102		2.2
11/20	100			44 45	54.3 8.6						0.1	102		2.3
		eSg	3	45 45					0.04				1.7	
CT7II	112	m aDa	3		56.3	0.15			0.04		9.0	00	1./	2.2
STZU	113	ePg	3	44 44					0.03		8.0	98	1.5	2.2
KORU	110	m ePg	3 3	44 44	56.7	0.20			0.03		7.7	97	1.5	2.1
KUKU	110	erg	3	44	50.7						1.1	87		2.1

								Про	долх	кение	табли	цы 3.
1	2 3	4	5	6 7	8	9	10	11	12			6 17
	eSg	3	45	12.0								
	m	3	45	17.9 0.50		(0.13				2.2	
NSLU	141 eSg	3	45	18.5								
	m	3	45	23.3 0.20		(0.04				1.8	
MEZ	147 ePg	3	45	1.1					7.9	92		2.1
					_							
				ерновицк								
				$\varphi = 48.25^{\circ}$								
	MD=	=1.5(4); Kj	p=6.8(2)); KD=6.8((4); M	IL=1.6	(2); .	MSF	I=1	3(3);		
CHRU	5.7 +iP	15	29	1.8					6.8	55		1.5
	Pm	15	29	1.9 0.10		(0.10	5.4				
	-iS	15	29	4.6	0.77	0.22				(
	Sm	15 15	29 29	4.8 0.14 5.3 0.06	0.77	0.23	20			().9 1.7	
KMPU	m 53 +iP	15	29 29	7.5		(0.30		7.2	68	1./	1.8
KIVII U	iS	15	29	14.2					1.2	00		1.0
KSV	65 eS	15	29	17.2								
115 (Sm	15	29	19.4 0.50	0.01	0.09				1	1.4	
NDNU	113 -iP	15	29	16.8					6.8	56		1.6
	Pm	15	29	16.9 0.20		(0.03	8.2				
	iS	15	29	29.9								
	m	15	29	32.0 0.27		(0.03				1.5	
	Sm	15	29	32.1 0.09	0.02	0.06				1	1.5	
HORU	114 iS	15	29	30.9								
STNU	117 -iP	15	29	16.6					6.3	60		1.3
	iS	15	29	32.1			_					
				та. Карпа								
				$\varphi = 45.72^{\circ}$								
	Λ		3); Kp=	11.7(7); KI)=11.	<i>1(23)</i> ;	MSI	H=3	.8(6)	;		
GIUM	130 P	19	46	54.3								
LEOM	154 P	19	46	56.2								
KIS	223 iP	19	47	4.5		,	·		11.4	216		4.1
	Pm	19	47	5.0 0.50		(0.45	12.0				
	iS	19	47	30.5		0.20						
	Sm	19	47 47	30.8 0.50		9.30						
CHRU	m 291 +iP	19 19	47 47	31.0 0.50 11.1		9.30			11.1	121		3.9
CHRO	Pm	19	47	11.5 0.30		(0.12	11 2	11.1	727		3.7
	-iS	19	47	42.7		,	J.12	11.2				
	Sm	19	47	45.4 0.75	0.93	1.01				2	4.1	
KSV	310 iP	19	47	12.7					10.9			3.9
	Pm	19	47	14.2 0.50		(0.18					
	Sm	19	47	51.1 1.20	0.35	0.67				4	1.0	
RAKU	315 -iP	19	47	13.9					10.8	371		3.8
	iS	19	47	48.7								
KMPU	316 iP	19	47	13.4					11.2	461		4.0
NIDNII 1	iS	19	47	47.3					11.2	157		4.0
NDNU	325 +iP	19	47	14.6					11.2	457		4.0
	iS	19	47	48.7								

							Продол	жение таб	блицы 3.
1	2 3	4	5	6 7	8	9	10 11 12		5 16 17
NSLU	363 +iP	19	47	19.5			11.1	431	3.9
	eS	19	47	58.3					
STNU	368 +iP	19	47	20.1				458	4.0
KORU	377 +iP	19	47	20.2			10.9	389	3.8
	eS	19	48	1.1					
TRSU	381 +iP	19	47	21.0			11.1	441	4.0
	eS	19	48	2.2					
MEZ	388 iP	19	47	21.7			11.0	407	3.9
	iS	19	48	3.3					
HORU	389 iP	19	47	22.2				433	3.9
BERU	409 -iP	19	47	24.2			10.8	371	3.8
MITTELL	eS	19	48	7.6			11.0	4.61	4.0
MUKU	423 -iP	19	47	26.3			11.2	461	4.0
MODG	eS	19	48	10.8			11.1	427	4.0
MORS	430 iP	19	47	26.9			11.1	437	4.0
11711	eS	19	48	12.3			10.0	394	2.0
UZH	458 iP	19	47	29.9			10.9	394	3.8
SHIU	eS 459 -iP	19 19	48 47	18.3 30.7			11.1	426	3.9
SHIO	439 -1F iS	19	48	18.2			11.1	420	3.9
STZU	472 iP	19	48 47	31.8			11.2	458	4.0
3120	eS	19	48	21.2			11.2	430	4.0
LVV	494 eP	19	47	34.3			10.0	401	3.9
LVV	eS	19	48	25.6			10.9	401	3.9
SEV	573 iP	19	47	40.9			11 /	300	4.1
SE V	Pm	19	47	41.1 0.52			0.17 11.4	300	4.1
	iS	19	48	34.7			0.17 11.4		
	Sm	19	48	41.3 0.49	0.03	0.06		3.6	
SIM	595 iP	19	47	46.1	0.03	0.00	11 4	301	4.1
DIIVI	Pm	19	47	50.3 0.35			0.19 11.8	301	1.1
	iS	19	48	45.2			0.17 11.0		
	Sm	19	48	50.1 1.00	0.11	0.12		3.6	
YAL	610 iP	19	47	46.8					
	iS	19	48	47.5					
ALU	624 iP	19	47	49.0			11.0	240	3.9
	Pm	19	47	49.5 0.41			0.09 12.5		
	Sm	19	47	59.8 0.59		0.06		3.6	
	eS	19	48	49.8					
SUDU	665 iP	19	47	53.9			11.4	318	4.1
	Pm	19	47	55.2 0.48			0.08 11.8		
	iS	19	49	0.7					
	Sm	19	49	3.0 0.58	0.13	0.01		3.9	
FEO	689 eP	19	47	57.6					
		№ 16	. 29 мар	та. Карпа	ты, р	район	вранча.		
		$0 = 14 \ 55 M$	ин 15.7c	$: \varphi = 45.39^{\circ}$	N: λ=	=26.3	°E; h=154 км	! :	
				,			$S_{i}^{2}MSH=3.2(1)$		
GIUM	149 P	D-3.0(22)	55 xp-10	45.1	, 10.	1(22)	, 111011 3.2(1	1),	
OIOM	_								
I EOM	S 102 D	1	56	6.3					
LEOM	193 P	l	55	48.9					
	S	1	56	12.8					
MILM	258 P	1	55	55.6					
				100					

Вербицкий С. Т., Пронишин Р. С., Прокопишин В. И., Стецкив А. Т., Чуба М. В., Нищименко И. М., Келеман И. Н.

			1	Продолжение таблицы	
1	2 3	4	5	6 7 8 9 10 11 12 13 14 15 16	
KIS	264 eP	1	55		3.7
	eS	1	56	25.0	
	Pm		56	6.0 0.80 0.50 9.0	
CHRU	325 iP	1	56		3.4
	Pm		56	4.2 0.70 0.09 10.6	
	iS	1	56	39.5	
	Sm	1	56	41.5 0.65 0.11 0.35 3.7	
RAKU	335 -iP	1	56	10.4.302	3.5
	Pm	1	56	5.1 0.80 0.13 10.1	
	eS	1	56	41.9	
	Sm	1	56	54.6 2.10 0.08 0.10 3.2	
KSV	338 + iP	1	56	4.6	
	Pm	1	56	5.7 0.40 0.11 10.0	
	eS	1	56	41.9	
	Sm	1	56	45.4 0.45 0.08 0.06 3.2	
KMPU	353 +iP	1	56	5.9 10.7 357	3.7
	iS	1	56	44.0	
NDNU	366 -iP	1	56	7.4 10.6 345	3.7
	Pm	1	56	7.7 0.20 0.20 10.7	
	iS	1	56	45.5	
	Sm	1	56	45.5 48.7 0.65 0.12 0.08 9.5 10.4 279	
NSLU	380 -iP	1	56	9.5 10.4 279	3.6
	Pm	1	56	10.1 0.50 0.08 10.2	
	iS	1	56	50.5	
	Sm	1	57	4.9 1.60 0.08 0.04 3.2	
KORU			56		3.5
	eS	1	56	52.6	
STNU	394 +iP	1	56		3.5
	iS	1	56	53.5	
TRSU	394 +iP	1	56		3.5
	Pm		56	11.7 0.80 0.12 10.4	
	eS	1	56	53.8	
	Sm	_	57	11.2 1.90 0.06 0.04 3.1	
MEZ	407 -iP	1	56		3.4
1,122	Pm	1	56	13.6 1.30 0.11 10.6	
	eS	1	56	55.9	
	Sm		57	1.4 2.25 0.09 0.07 3.3	
BERU	421 -iP	1	56		3.6
DLICE	eS	1	56	58.9	5.0
HORU	425 iP	1	56		3.7
поко	eS	1	56	59.9	5.7
MUKU	437 -iP	1	56		3.4
1410120	eS	1	57	2.3	J. ⊤
MORS	454 iP	1	56		3.5
141010	eS	1	57	6.1	5.5
UZH	471 -iP	1	56		3.2
CLII	Pm	_	56	21.0 0.90 0.03 10.3	J.∠
	1 111	1	50		
				110	

The color of the					Продолжение таблиц	ы 3.
SHIU 480 iP 1 56 27.8 2.40 0.07 0.02 3.2 SHIU 480 iP 1 56 27.3 2.20 0.01 10.3 Pm 1 56 27.3 2.20 0.01 10.3 SSM 1 57 36.7 2.20 0.08 0.02 3.3 STZU 489 Pm 1 55 41.5 2.20 0.06 10.6 -iP 1 56 22.8 10.5 328 3.6 Sm 1 57 16.4 1.90 0.04 0.06 3.2 3.6 LVV 521 -iP 1 56 22.9 0.03 10.4 3.2 ES 1 57 20.1 20.0 0.03 10.4 3.0 eS 1 57 20.1 3.0 0.01 9.6 3.0 SW 59 PM 1 56 31.7 10.5 173 3.6 SW 1 57 30.6 0.52 0.01 0.01 0.01 9.6 2.9 SIM 1 57 30.6 0.52 0.01 0.01	1	2 3	4	5	6 7 8 9 10 11 12 13 14 15 16	17
SHIU		eS	1	57	9.9	
Pm 1 56 27.3 2.20 0.01 10.3 10.5 10.5 2.5 1.6 57 11.6 11.6 11.6 11.5 11.6 11.6 11.5 11.6 11.5 11.6 11.5 11.6 11.5 11.5 11.6 11.5 11.		Sm	1	57	27.8 2.40 0.07 0.02 3.2	
Color	SHIU	480 iP	1	56	21.4 300	
STZU 489 Pm 1 57 36.7 2.20 0.08 0.02 3.3 STZU 489 Pm 1 56 41.5 2.20 0.06 10.6 -iP 1 56 22.8 10.5 328 3.6 LVV 521 ·iP 1 56 22.9 10.5 329 3.6 Pm 1 56 25.9 10.5 329 3.6 eS 1 57 20.1 20.01 0.03 10.4 eS 1 57 20.1 3.0 3.0 SEV 589 eP 1 56 32.8 0.33 0.01 9.6 3.6 eS 1 57 30.6 0.52 0.01 0.01 2.9 3.6 SIM 615 eP 1 56 37.5 10.7 205 3.7 ALU 642 eP 1 56 40.0 10.3 167 3.5 Pm 1 56 40.3 0.42 0.01 10.4 5 3.8 Sm 1 57 50.6 0.56 0.01 0.03		Pm	1	56	27.3 2.20 0.01 10.3	
STZU 489 Pm 1 55 41.5 2.20 0.06 10.6 3.28 3.6 Sm 1 57 16.4 1.90 0.04 0.06 3.2 3.2 LVV 521 -iP 1 56 25.9 10.5 329 3.6 Pm 1 56 25.9 10.3 10.4 3.2 3.6 Sm 1 57 20.1 3.0 0.03 10.4 3.0 SEV 589 eP 1 56 31.7 10.5 173 3.6 Pm 1 56 32.8 0.33 0.01 9.6 3.6 eS 1 57 30.6 0.52 0.01 0.01 2.9 SIM 615 eP 1 56 37.5 10.7 205 3.7 ALU 642 eP 1 56 40.0 10.3 167 3.2 SUDU 685 eP 1 56 40.3 0.42 0.01 10.4 3.2 SUDU 685 eP 1 56 45.4 10.8 225 <td></td> <td>eS</td> <td>1</td> <td>57</td> <td>11.6</td> <td></td>		eS	1	57	11.6	
LVV S21 - iP 1 56 22.8 10.5 328 3.6 Sm		Sm	1	57	36.7 2.20 0.08 0.02 3.3	
LVV 521 - iP 1 56 25.9 10.5 329 3.6	STZU	489 Pm	1	55	41.5 2.20 0.06 10.6	
LVV 521 - iP 1 56 25.9 10.5 329 3.6		-iP	1	56	22.8 10.5 328	3.6
LVV 521 - iP 1 56 25.9 10.5 329 3.6 Pm 1 56 27.3 0.80 0.03 10.4 329 3.6 eS 1 57 20.1 3.0 3.0 SEV 589 eP 1 56 31.7 10.5 173 3.6 ES 1 57 30.6 32.8 0.33 0.01 9.6 9.0 3.6 SIM 615 eP 1 56 32.8 0.33 0.01 9.6 2.9 SIM 615 eP 1 56 30.6 0.52 0.01 0.01 2.9 SIM 615 eP 1 56 40.0 10.3 167 3.5 ALU 642 eP 1 56 40.3 0.42 0.01 10.4 68 10.3 167 3.5 FPm 1 56 45.4 0.00 10.03 3.2 3.8 SUDU 685 eP 1 56 45.4 0.00 10.0 2.9		Sm	1	57		
Pm	LVV		1			3.6
SEV Sm 1 57 20.1 3.0 3.0 SEV S89 eP 1 56 31.7 10.5 173 3.6 Pm 1 56 32.8 0.33 0.01 9.6 eS 1 57 30.6 5.0 0.01 0.01 2.9 SIM 615 eP 1 56 37.5 10.7 205 3.7 ALU 642 eP 1 56 40.0 10.3 167 3.5 Pm 1 56 40.0 10.3 167 3.5 SM 1 57 50.6 0.56 0.01 0.01 0.4 4.5 Sm 1 57 50.6 0.56 0.01 0.03 3.2 SUDU 685 eP 1 56 45.4 10.8 225 3.8 Fm 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.7 0.52 0.01 0.00 2.9 SM SM 1 57 57.0 57			1			
SEV						
SEV 589 eP 1 56 31.7 10.5 173 3.6 Pm 1 56 32.8 0.33 0.01 9.6 9.6 eS 1 57 30.6 0.52 0.01 0.01 2.9 SIM 615 eP 1 56 37.5 10.7 205 3.7 ALU 642 eP 1 56 40.0 10.3 167 3.5 Pm 1 56 40.3 0.42 0.01 10.4 es 1.6 8.5 1.5 45.4 10.8 225 3.8 Sm 1 57 50.6 0.56 0.01 0.03 3.2 3.2 SUDU 685 eP 1 56 45.4 10.03 10.8 225 3.8 Pm 1 56 45.4 10.03 2.9 2.9 **No 17. 29 марта. Карпаты, район Вранча. **Del Je						
Pm	SEV					3.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SE.					3.0
SIM 1 57 30.6 0.52 0.01 0.01 2.9 SIM 615 eP 1 56 37.5 10.7 205 3.7 ALU 642 eP 1 56 40.0 10.3 167 3.5 Pm 1 56 40.3 0.42 0.01 10.4 es 1 57 45.4 10.8 225 3.8 Sm 1 57 50.6 0.56 0.01 0.03 3.2 3.2 3.8 3.8 3.2 3.8 3.9 3.9 3.9 3.9 3.0 3.9 3.9 3.0						
SIM 615 eP 1 56 37.5 10.7 205 3.7 ALU 642 eP 1 56 40.0 10.3 167 3.5 Pm 1 56 40.3 0.42 0.01 10.4 es 1 57 45.4 string 3.2 3.2 3.2 3.2 3.8 3.8 10.8 225 3.8 3.8 3.8 10.8 225 3.8 3.8 3.8 10.8 225 3.8 3.8 3.2 3.8 3.8 3.2 3.2 3.8 3.8 3.8 3.2 3.8 3.8 3.8 3.8 3.8 3.8 3.2 3.8 3.8 3.8 3.2 3.8 3.8 3.8 3.8 3.2 3.8 3.9 3.8 3.9 3.9 3.9 3.9 3.9 3.0						
ALU 642 eP 1 56 40.0 10.3 167 3.5 Pm 1 56 40.3 0.42 0.01 10.4 eS 1 57 45.4 Sm 1 57 45.4 Sm 1 57 50.6 0.56 0.01 0.03 3.2 3.2 SUDU 685 eP 1 56 45.4 10.8 225 3.8 Pm 1 56 46.3 0.31 0.01 9.8 iS 1 57 54.8 Sm 1 57 57.7 0.52 0.01 0.00 2.9 *** **No 1.** 1.** 29 *** **No 1.** 1.** 29 *** **No 1.** 20 ***	SIM					3 7
Pm						
SUDU 685 eP 1 56 45.4 10.8 225 3.8 Pm 1 56 45.4 10.8 225 3.8 Pm 1 56 46.3 0.31 0.01 9.8 is 1 57 57.7 0.52 0.01 0.00 2.9 Fm 1 56 46.3 0.31 0.01 9.8 is 1 57 57.7 0.52 0.01 0.00 2.9 Fm 1 56 46.8 Fm 1 57 57.7 0.52 0.01 0.00 2.9 Fm 1 50 18 42.0 13.0 592 5.0 Fm 1 50 19 18 42.5 0.60 9.45 13.3 S 19 19 7.0 Sm 19 19 8.8 0.049 47.00 0.10 4.9 Fm 19 18 48.2 11.7 581 4.3 Fm 19 19 19 5.1 0.33 0.49 12.8 is 19 19 20.1 Sm 19 19 20.1 Sm 19 19 20.1 Sm 19 19 20.1 Sm 19 19 25.1 Sm 19 19 30.4 0.29 0.23 4.40 4.7 And 11.7 565 4.3 Fm 19 19 18 50.8 11.7 565 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 19 19 19 44.6 0.92 0.40 0.41 3.9 Fm 11.7 581 4.3 Fm 11	ALC					3.3
SUDU Sm 1 57 50.6 0.56 0.01 0.03 3.2 SUDU 685 eP 1 56 45.4 10.8 225 3.8 Pm 1 56 46.3 0.31 0.01 9.8 iS 1 57 54.8 Sm 1 57 57.7 0.52 0.01 0.00 2.9 **Total Name of State of St						
SUDU 685 eP 1 56 45.4 10.8 225 3.8 Pm 1 56 46.3 0.31 0.01 9.8 iS 1 57 54.8 Sm 1 57 57.7 0.52 0.01 0.00 2.9 Fm 1 56 46.3 0.31 0.01 9.8 iS 1 57 57.7 0.52 0.01 0.00 2.9 Fm 17. 29 mapta. Kapnath, païoh Bpahua. $0=194 \ l8 \ muh$ 5c; $\varphi=45.64^{\circ}N$; $\lambda=26.46^{\circ}E$; $h=135 \ \kappa m$; $MD=4.3(25)$; $Kp=12.5(14)$; $KD=11.7(25)$; $MSH=4.5(14)$; KIS 236 P 19 18 42.0 13.0 592 5.0 Pm 19 18 42.5 0.60 9.45 13.3 S 19 19 7.0 Sm 19 19 8.0 0.49 47.00 0.10 4.9 CHRU 299 +iP 19 18 48.2 11.7 581 4.3 Pm 19 19 5.1 0.33 0.49 12.8 iS 19 19 20.1 Sm 19 19 22.8 0.85 0.41 9.38 5.0 KSV 316 -iP 19 18 50.9 11.6 561 4.2 Pm 19 18 51.7 0.62 0.26 12.4 eS 19 19 25.1 Sm 19 19 25.1 Sm 19 19 30.4 0.29 0.23 4.40 4.7 RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm 19 19 18 50.8 11.7 565 4.3 Pm 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 FM 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 FM 19 19 44.6 0.92 0.40 0.41 3.9						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHIDH					2 0
S	SODO					3.0
Sm 1 57 57.7 0.52 0.01 0.00 2.9						
Nº 17. 29 марта. Карпаты, район Вранча. 0=19 ч 18 мин 5 с; φ=45.64 °N; λ=26.46 °E; h=135 κм; MD=4.3(25); Kp=12.5(14); KD=11.7(25); MSH=4.5(14); KIS 236 P 19 18 42.0 13.0 592 5.0 Pm 19 18 42.0 9.45 13.3 592 5.0 Pm 19 18 42.0 9.45 13.3 592 5.0 CHRU 299 +iP 19 18 42.5 0.60 9.45 13.3 4.9 CHRU 299 +iP 19 18 48.2 11.7 581 4.3 Pm 19 19 5.1 0.33 0.49 12.8 12.8 4.3 KSV 316 -iP 19 18 50.9 11.6 561 4.2 Pm 19 18 50.9 0.26 12.4 2.2 RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sm	_			
KIS 236 P 19 18 42.0 13.0 592 5.0 Pm 19 18 42.5 0.60 9.45 13.3 592 5.0 Sm 19 19 7.0 Sm 19 18 48.2 11.7 (25); MSH=4.5(14); Sm 19 19 7.0 Sm 19 19 8.0 0.49 47.00 0.10 4.9 CHRU 299 +iP 19 18 48.2 11.7 581 4.3 Pm 19 19 5.1 0.33 0.49 12.8 iS 19 19 20.1 Sm 19 19 22.8 0.85 0.41 9.38 5.0 KSV 316 -iP 19 18 50.9 11.6 561 4.2 Pm 19 18 51.7 0.62 0.26 12.4 eS 19 19 25.1 Sm 19 19 25.1 Sm 19 19 25.1 Sm 19 19 30.4 0.29 0.23 4.40 4.7 RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm 19 19 18 50.8 11.7 565 4.3 Pm 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 is 19 19 24.0						
KIS		1.			•	
Pm 19 18 42.5 0.60 9.45 13.3 S 19 19 7.0 Sm 19 19 8.0 0.49 47.00 0.10 4.9 CHRU 299 +iP 19 18 48.2 11.7 581 4.3 Pm 19 19 5.1 0.33 0.49 12.8 581 4.3 Pm 19 19 20.1 5.0 5.0 5.0 5.0 KSV 316 -iP 19 18 50.9 11.6 561 4.2 Pm 19 18 51.7 0.62 0.26 12.4 68 19 19 25.1 Sm 19 19 30.4 0.29 0.23 4.40 4.7 4.7 RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm 19 18 53.1 0.53 0.36 11.1 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 Image: All Column 10 of the column 10 of the column 10	VIC					5.0
SS Sm 19 Sm 19 Sm 19 Sm 19 Sm 19 Sm 19 Sm 4.9 CHRU 299 +iP 19 Sm 18 Sm 48.2 11.7 581 4.3 Pm 19 Sm 5.0 KSV 316 -iP 19 Sm 18 Sm 50.9 Sm 11.6 Sm 561 Sm 4.2 Pm 19 Sm 19 Sm 19 Sm 19 Sm 11.6 Sm 561 Sm 4.2 RAKU 318 -iP 19 Sm 19 Sm 19 Sm 11.7 Sm 565 Sm 4.3 Pm 19 Sm 19 Sm 19 Sm 11.7 Sm 565 Sm 4.3 RAKU 318 -iP 19 Sm 18 Sm 53.1 Sm 0.36 II.1 3.9 ISS 19 Sm 19 Sm 19 Sm 0.40 Sm 0.41 Sm 3.9 KMPU 325 +iP 19 Sm 18 Sm 50.5 Sm 11.7 Sm 581 Am ISS 19 Sm 19 Sm 11.7 Sm 581 Am 4.3 ISS 19 Sm 19 Sm 11.7 Sm	KIS					5.0
CHRU 299 +iP 19 18 48.2 11.7 581 4.3 Pm 19 19 20.1 Sm 19 19 22.8 0.85 0.41 9.38 5.0 KSV 316 -iP 19 18 50.9 19 25.1 Sm 19 19 25.5 Sm 19 19 25.5 Sm 19 19 25.5 Sm 19 19 24.0 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 KMPU 325 +iP 19 19 24.0						
CHRU 299 +iP 19 18 48.2 11.7 581 4.3 Pm 19 19 5.1 0.33 0.49 12.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Pm	CHRU					4.3
IS Sm 19 Sm 11.6 Sm 5.0 5.0 11.6 Sm 561 Sm 4.2 4.3						
KSV 316 -iP 19 18 50.9 11.6 561 4.2 Pm 19 18 51.7 0.62 0.26 12.4 </td <td></td> <td></td> <td>19</td> <td>19</td> <td></td> <td></td>			19	19		
Pm 19 18 51.7 0.62 0.26 12.4 eS 19 19 25.1 Sm 19 19 30.4 0.29 0.23 4.40 4.7 RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm 19 18 53.1 0.53 0.36 11.1 3.9 0.36 11.1 3.9 KMPU 325 +iP 19 19 44.6 0.92 0.40 0.41 3.9 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 iS 19 19 24.0 11.7 581 4.3		Sm	19	19		
RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm 19 19 25.1 iS 19 19 25.5 Sm 19 19 25.5 Sm 19 19 25.5 Sm 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3	KSV	316 -iP	19	18		4.2
RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm 19 18 53.1 0.53 0.36 11.1 iS 19 19 25.5 Sm 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 19 19 24.0						
RAKU 318 -iP 19 18 50.8 11.7 565 4.3 Pm 19 18 53.1 0.53 0.36 11.1 11.7 565 4.3 iS 19 19 25.5 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 iS 19 19 24.0						
Pm 19 18 53.1 0.53 0.36 11.1 iS 19 19 25.5 Sm 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 iS 19 19 24.0	D 4 1/11					4.2
iS 19 19 25.5 Sm 19 19 44.6 0.92 0.40 0.41 3.9 KMPU 325 +iP 19 18 50.5 11.7 581 4.3 iS 19 19 24.0	KAKU					4.3
KMPU Sm 19 19 44.6 0.92 0.40 0.41 3.9 11.7 581 19 18 50.5 11.7 581 4.3 11.7 581 19 19 24.0						
KMPU 325 +iP 19 18 50.5 11.7 581 4.3 iS 19 19 24.0						
iS 19 19 24.0	KMPU					43
	121,111					
	NDNU					4.3

Вербицкий С. Т., Пронишин Р. С., Прокопишин В. И., Стецкив А. Т., Чуба М. В., Нищименко И. М., Келеман И. Н.

								Продолжение таблицы 3.
1	2 3	4	5	6	7	8	9	10 11 12 13 14 15 16 17
	Pm	19	18	52.4	0.34			2.40 13.1
	iS	19	19	26.1				
	Sm	19	19			0.37	6.10	4.9
NSLU	365 +iP	19	18	56.3				11 7 577 / 2
	Pm	19	18	58.1	1.46			0.99 12.3
	eS	19	19	35.9				
	Sm	19	19			1.33	0.37	4.3
STNU	373 +iP	19	18	57.5				4.3 11.8 594 4.3
	eS	19	19	37.3				
KORU	378 +iP	19	18	57.4				11.7 567 4.3
TRSU	382 -iP	19	18	59.7				11 7 569 4 2
	Pm	19	18	59.8	1.40			0.62 11.8
	eS	19	19	38.8				
	Sm	19	19			0.59	0.13	4.0
MEZ	390 -iP	19	18	59.8				11.7 570 4.3
	Pm	19	19	2.2	1.30			11.7 570 4.3 0.39 12.2
	iS	19	19	417				
	Sm	19	19	46.4	1.20	1.25	0.16	4.3 11.7 567 4.3
HORU	398 +iP	19	18	59.4				11.7 567 4.3
	Pm	19	19	0.0	0.49			0.18 13.4
	iS	19	19	40.8				
	Sm	19	19	55.8	0.77	7.00	4.70	5.2 11.7 585 4.3 1.07 12.4
BERU	409 -iP	19	19	0.4				11.7 585 4.3
	Pm	19	19	1.2	0.78			1.07 12.4
	eS	19	19	43.4				
	Sm	19	19	59.0	0.84	0.77	0.11	4.1
MUKU		19	19	3.1				11.7 573 4.3
MORS	434 -iP	19	19	5.4				11.7 590 4.3
UZH	459 +iP	19	19	7.0				11.6 541 4.2
SHIU	462 iP	19	19	8.4				11.7 571 4.3
	474 -iP	19	19	9.5				11.7 569 4.3
LVV	499 eP	19	19	12.2				11.7 568 4.3
SEV	580 P	19	19	20.8				11.6 370 4.2
	Pm	19	19	21.2	0.32			0.33 12.0
	Pm S	19	20	19.3				
	Sm	19	20	20.1	0.25	0.12	0.04	4.1
SIM	603 P	19	19	23.3				11.7 405 4.3
YAL	617 P	19	19	23.7				11.4 303 4.1
	S	19	20	26.4				
ALU	631 P	19	19	26.6				11.4 328 4.1
	Pm	19	19	27.0	0.47			0.36 12.6
	S	19	20	32.5				
	Sm	19	20	33.8	0.39	0.23	0.11	4.3
SUDU	673 P	19	19	31.4				11.4 385 4.1
	Pm	19	19	33.3	0.46			0.45 13.0
	S	19	20	41.0				
	Sm	19	20	42.0	0.52	0.10	0.39	4.5
FEO	698 P	19	19	34.8				11.4 363 4.1
	Pm	19	19	35.5	0.41			0.19 12.5
	S	19	20	45.8				
	Sm	19	20	46.3	0.39	0.24	0.10	4.4
KERU	780 P	19	19	46.0				

									кение таб	
1	2 3	4	5	6 7	8	9		11 12	13 14 1	5 16 17
		№ 18	3. 3 апре.	ля. Карпат	ъ, р	айон	і Вран	іча.		
	0	=12ч 38м	ин 56с; с	$\rho = 45.57$ °N;	$\lambda = 2$	6.42°	E; $h=$	137.8 кл	<i>1;</i>	
				KD=11.6						
GIUM	140 P	12	39	23.1	/,			.,, ,	(-/)	
	S	12	39	42.5						
LEOM	173 P	12	39	26.3						
	S	12	39	47.6						
KIS	243 iP	12	39	34.0				12.1	300	4.5
	Pm	12	39	35.0 0.50			1.05 1	1.2		4.0
	iS	12	40	0.0						
	m	12	40	0.5 0.80		5.80				
CHRU	306 iP	12	39	40.7				11.5	537	4.2
	Pm	12	39	41.8 0.40			0.56 1	1.9		
	Sm	12	40	15.7 0.60	1.59	0.41			4.3	
KSV	322 -iP	12	39	43.0					622	4.4
	Pm	12	39	43.6 0.60			0.32 1	1.9		
	iS	12	40	17.6						
	Sm	12	40	37.8 1.05	1.20	0.71			4.3	
RAKU	322 iP	12	39	42.5					607	4.3
	Pm	12	39	43.9 0.60			1.43 1	1.9		
	iS	12	40	17.7						
	Sm	12	40	20.5 1.25	0.43	0.33			3.9	
KMPU	333 iP	12	39	43.9				11.8	613	4.3
NIDNITI	iS	12	40	17.5				11.0	500	4.2
NDNU	344 eP	12	39	45.2			1.50.1		593	4.3
	Pm	12	39	45.6 0.20			1.52 1	12.2		
	iS	12	40	22.6	0.71	1 00			4.2	
NOLL	Sm	12	40	22.8 0.55	0.71	1.08		11.0	4.3	4.2
NSLU	369 +iP	12	39	48.5			0.27 1		599	4.3
	Pm	12	39	49.3 0.20			0.27 1	1.5		
	eS Sm	12	40	27.6	0.41	0.00			2 0	
CTNIII	Sm	12	40	33.9 0.65	0.41	0.08		11.0	3.8	4.2
STNU	378 iP	12 12	39 40	49.2				11.8	602	4.3
KORU	iS 381 iP	12	39	29.9 49.3				11 8	601	4.3
KOKU	eS	12	40	30.5				11.0	001	4.5
TRSU	385 iP	12	39	49.9				11.7	592	4.3
TKSU	Pm	12	39	52.5 0.20			0.46 1		372	7.5
	eS	12	40	30.9			0.40 1	11.5		
	Sm	12	40	54.9 1.65	0.15	0.25			3.7	
MEZ	394 iP	12	39	51.3	0.13	0.23		11.7		4.3
WILL	Pm	12	39	53.7 1.00			0.26 1	1.6	300	1.5
	iS	12	40	33.0			0.20			
	Sm	12	40	52.9 1.35	0.41	0.10			3.9	
HORU	405 iP	12	39	52.3				11.7		4.3
	Pm	12	39	53.0 0.20			0.20 1	2.0		
	Sm	12	40	37.6 0.55					4.3	
BERU	412 -iP	12	39	53.2		00		11.5	537	4.2
	iS	12	40	36.3				_		-
MUKU	428 iP	12	39	55.3				11.7	586	4.3
	eS	12	40	40.6						

							Продол	жение таб	блицы 3.
1	2 3	4	5	6 7	8	9	10 11 12	13 14 1	15 16 17
MORS	440 iP	12	39	56.6			11.7	580	4.3
	eS	12	40	42.5					
UZH	462 -iP	12	39	58.7			11.7	577	4.3
	iS	12	40	47.4			44.0		
SHIU	467 iP	12	39	60.0			11.8	599	4.3
T 3737	eS	12	40	49.1			11.6	5.47	4.2
LVV	505 -iP	12	40	4.2				547	4.2
	Pm iS	12 12	40 40	6.0 0.90 56.7			0.30 12.1		
	Sm	12	41	8.4 1.50	0.36	0.21		4.1	
SEV	582 +iP	12	40	11.8	0.50	0.21		256	3.9
SE (Pm	12	40	13.6 0.45				230	3.7
	eS	12	41	10.5			0.00 11.0		
	Sm	12	41	12.5 0.50	0.16	0.11		4.0	
SIM	606 eP	12	40	15.7				250	3.9
	Pm	12	40	16.0 0.33			0.18 11.9		
	eS	12	41	16.7					
	Sm	12	41	17.4 0.54	0.09	0.13		3.7	
YAL	619 eP	12	40	16.6					
	eS	12	41	20.5					
ALU	634 +iP	12	40	18.5				180	3.6
	Pm	12	40	19.5 0.48			0.03 11.1		
	eS	12	41	22.9	0.06			• •	
CLIDII	Sm	12	41	23.7 0.33	0.06	0.05		3.8	2.0
SUDU	676 eP	12	40	24.0				235	3.9
	Pm	12	40	26.0 0.48			0.05 11.6		
	eS Sm	12 12	41 41	31.5 33.5 0.53	0.10	0.01		3.9	
FEO	701 eP	12	40	30.3	0.19	0.01		230	
TLO	Pm	12	40	36.5 0.38			0.04 11.7	230	
	eS	12	41	43.1			0.01 11.7		
	Sm	12	41	44.3 0.41	0.07	0.07		3.9	
							н Вранча.		
	0						7°E; h=119.4 i	vм.	
	U						MSH=2.8(4);	On,	
KIS	252 D	MD-3.3			D-9.	9(0),		100	3.4
KIS	253 P Pm	13	0	30.0 30.5 0.80			0.40 10.6	100	3.4
	S	13	0	57.5			0.40 10.0		
	Sm	13	0	57.8 0.50	1.00				
	m	13	0	58.0 0.50					
RAKU	318 iP	13	0	37.9					
KSV	320 iP	13	0	38.5			9.8	234	3.2
	Pm	13	0				0.04 9.7		
	eS	13	1	12.9					
	Sm	13	1	16.5 0.94	0.02	0.10		2.3	
KMPU	335 iS	13	1	14.0					
NDNU	348 iP	13	0	41.4				257	3.3
	Pm	13	0	41.5 0.20			0.05 10.4		
	iS	13	1	16.2	0.05	0.22		2.7	
NICITI	Sm	13	1	17.1 0.41	0.05	0.22	0.0	2.7	2.2
NSLU	364 eP	13	0	43.4			9.9	238	3.3

								Про	кпод	кение	таблиц	цы 3.
1	2 3	4	5	6 7	8	9	10	11	12			6 17
STNU	376 eP	13	0	44.6					9.9	240		3.3
MEZ	390 eP	13	0	47.9								
HORU	407 iP	13	0	48.2					9.8	231		3.2
	eS	13	1	30.8								
MORS	437 eP	13	0	53.2					9.9	243		3.3
SEV	593 P	13	1	9.2					10.1	148		3.4
	Pm	13	1	10.4 0.42			0.01	9.7				
	S	13	2	8.6		0.04						
CLIDII	Sm	13	2	9.9 0.32	0.01	0.01				3	.1	
SUDU	687 S	13	2	30.0	0.00	0.02				2	2	
	Sm	13	2	31.4 0.43			T 7			3	.2	
				еля. Закај								
	1.00			$c; \varphi = 48.2$								
				KD=6.6	(3); M	L=I.	3(3);	MSF				
KORU	11 -ePg	16	47	38.7					6.6	49		1.4
	eSg	16	47	40.2			0.21				1.0	
TD CLI	m 22 P	16	47	43.9 0.30			0.21			50	1.2	1.5
TRSU	22 ePg	16	47	40.9			0.04		6.7	52		1.5
	Pm	16	47 47	42.0 0.10			0.04	6.6				
	iSg	16	47 47	44.2	0.00	0.27				1	2	
	Sm m	16 16	47 47	44.7 0.20 44.9 0.10		0.27	0.10			1	.2 1.2	
NSLU	25 ePg	16	47	41.4			0.10		6.7	53	1.2	1.5
NSLO	Pm	16	47	41.5 0.10			0.03	6.7	0.7	33		1.5
	eSg	16	47	45.2			0.03	0.7				
	m	16	47	45.9 0.15			0.14				1.4	
	Sm	16	47	46.0 0.25		0.08	0.11			1	.1	
MUKU	40 eSg	16	47	50.2	,					_		
MEZ	40 eSg	16	47	49.7								
RAKU	81 eSg	16	48	3.7								
	_	№ 21. 12 a	преля. Х	Смельниц	кая о	бл., г)-н с.	Кура	ажи	н.		
				φ ; $\varphi = 48.64$								
	MD			KD=5.4						9(2).		
NDNU2	7.4 ePg	15	$\frac{1}{32}$ 3.3(2)	53.1	(3), 111	L V.	0(2),	11151	5.3	27		0.7
TIDITOL	eSg	15	32	54.4					5.5	27		0.7
NDNU	7.7 +iPg	15	32	53.5					5.4	29		0.8
	Pm	15	32	53.5 0.10			0.09	5.2				
	-iSg	15	32	54.6								
	Sm	15	32	54.6 0.10	0.12	0.40				0	.8	
	m	15	32	54.7 0.20			0.09				0.6	
NDNU1	19 -iPg	15	32	55.2					5.5	30		0.8
	Pm	15	32	55.2 0.03			0.03	5.8				
	eSg	15	32	57.4								
	Sm	15	32	57.6 0.15	0.18	0.01				0	.9	
	m	15	32	58.1 0.23			0.06				0.9	
NDNU3	19 eSg	15	32	57.5								
				ля. Карп								
	($e; \varphi = 45.9^{\circ}$;		
		MD=3.1	l (4); Kp=	9.2(3); KI	D = 9.5	(4); 1	MSH=	=2.9(<i>(5);</i>			
GIUM	121 P	18	33	4.9				,	,			
				115								

									Про	кпоп	кение т	габлицы 3	3.
1	2 3	4	5	6	7	8	9	10	11	12	13 14		_
	S	18	33	20.2			-					1 - 1 1	_
LEOM	130 P	18	33	6.3									
	S	18	33	21.9									
MILM	193 S	18	33	34.1									
NDNU3	293 iS	18	33	53.4									
KMPU	297 eP	18	33	26.1						9.7	220	3.	.2
	iS	18	33	54.8								-	
NDNU	303 iP	18	33	26.1						9.6	211	3.	.1
1,21,0	Pm	18	33		0.09			0.01	9.4	,.0		٥.	
	iS	18	33	55.9	0.05			0.01	,				
	Sm	18	33		0.25	0.00	0.08				3.	0	
NDNU1	305 iS	18	33	56.4	0.23	0.00	0.00				5.		
NDNU2	309 iS	18	33	57.6									
NSLU	358 eS	18	34	11.0									
NBLC	Sm	18	34		1 75	0.03	0.01				2.	7	
HORU	369 eS	18	34	11.4	1.75	0.03	0.01				۷.	,	
SEV	562 P	18	33	56.8						9.2	175	2.	Q
SL v	Pm	18	33		0.22			0.00	9.0	7.2	1/3	2.	. ,
	S	18	34	51.3	0.22			0.00	7.0				
	Sm	18	34		0.41	0.01	0.00				2.	7	
ALU	612 S	18	34	59.6	0.41	0.01	0.00				۷.	/	
ALU	Sm	18	35		0.26	0.01					3.	1	
SUDU	652 P	18	34	8.5	0.20	0.01				0.6	195	3.	1
SODO	Pm	18	34		0.22			0.00	9.1	9.0	193	3.	. 1
	S				0.22			0.00	9.1				
		18	35 35	12.5	0.27	0.00	0.01				3 (n	
	Sm	18	35	14.4		0.00		Бото			3.0	0	
		18 № 23.	35 28 апре ля	14.4 . Py M	1ЫНИ	ія, ра	ной				3.0	0	
	Sm	18 № 23. 0=04 42	35 28 апреля мин <i>17.5с</i>	14.4 Pyw $\varphi = 4$	тыни 8.11	ія , ра °N; λ	айон =26.5	54°E;	h=7	км;		0	
	Sm MD :	18 № 23. 0=04 42 =1.8(10); 1	35 28 апреля Эмин 17.5с Кр=7.9(3),	14.4 Pyn φ=4 KD=	тыни 8.11	ія , ра °N; λ	айон =26.5	54°E;	h=7	км; H=1	.5 <i>(3);</i>	0	
KMPU	<i>MD</i> : 50 ePg	18 № 23. 0=04 42	35 28 апреля Эмин 17.5с Кр=7.9(3), 42	14.4 Pyn $\varphi = 4$ $KD = 27.0$	тыни 8.11	ія , ра °N; λ	айон =26.5	54°E;	h=7	км;			.6
	Sm MD: 50 ePg eSg	18 № 23. 1 0=04 42 =1.8(10); 1 0 0	35 28 апреля <i>Мин 17.5с</i> <i>Kp=7.9(3)</i> , 42 42	14.4 Pyw $\varphi = 4$ KD = 27.0 34.1	тыни 8.11	ія , ра °N; λ	айон =26.5	54°E;	h=7	км; H=1 6.9	7.5(3); 59		.6
KMPU NDNU3	Sm MD: 50 ePg eSg 78 +iPg	18 № 23. 1 0=04 42 =1.8(10); 1 0 0	35 28 апреля Эмин 17.5с Кр=7.9(3), 42 42 42 42	14.4 Pyn $\phi = 4$ KD = 27.0 34.1 31.7	тыни 8.11	ія , ра °N; λ	айон =26.5	54°E;	h=7	км; H=1	.5 <i>(3);</i>		
	MD: 50 ePg eSg 78 +iPg eSg	18 № 23. 1 0=04 42 =1.8(10); 1 0 0	35 28 апреля Эмин 17.5с Кр=7.9(3), 42 42 42 42 42	14.4 Pyw $\varphi = 4$ 27.0 34.1 31.7 42.4	тыни 8.11	ія , ра °N; λ	айон =26.5	54°E;	h=7	км; H=1 6.9 7.1	7.5(3); 59	1.	
NDNU3 NDNU2	MD: 50 ePg eSg 78 +iPg eSg 78 ePg	18 № 23. 3 0=04 42 =1.8(10); 1 0 0 0 0 0	35 28 апреля <i>Эмин 17.5с</i> <i>Кр=7.9(3)</i> , 42 42 42 42 42 42	14.4 1. PyM $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9	тыни 8.11	ія , ра °N; λ	айон =26.5	54°E;	h=7	КМ; H=1 6.9 7.1 7.1	7.5(3); 59 63 64	1. 1. 1.	.7
NDNU3	MD: 50 ePg eSg 78 +iPg eSg	18 № 23. 1 0=04 42 =1.8(10); 1 0 0 0 0	35 28 апреля <i>Эмин 17.5с</i> <i>Кр=7.9(3)</i> , 42 42 42 42 42 42 42	14.4 Pym γ φ=4 27.0 34.1 31.7 42.4 31.9 32.3	1ыни (8.11) =7.2(ія , ра °N; λ	айон =26.5	54°E;	h=7 ; MS	км; H=1 6.9 7.1	7.5(3); 59 63	1.	.7
NDNU3 NDNU2	MD: 50 ePg eSg 78 +iPg eSg 78 ePg	18 № 23. 3 0=04 42 =1.8(10); 6 0 0 0 0 0 0	35 28 апреля <i>Эмин 17.5с</i> <i>Кр=7.9(3)</i> , 42 42 42 42 42 42 42 42	14.4 Pym γ <i>φ</i> =4 27.0 34.1 31.7 42.4 31.9 32.3 32.4	1ЫНИ (8.11) =7.2(ія , ра °N; λ	айон =26.5	54°E; 7.7(1) 0.07	h=7	КМ; H=1 6.9 7.1 7.1	7.5(3); 59 63 64	1. 1. 1.	.7
NDNU3 NDNU2	MD: 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m	18 № 23. 1 0=04 42 =1.8(10); 1 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42	14.4 1. PyM $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6	1ыни (8.11) =7.2(ія , ра °N; λ	айон =26.5	54°E; !.7(1)	h=7 ; MS	КМ; H=1 6.9 7.1 7.1	7.5(3); 59 63 64	1. 1. 1.	.7
NDNU3 NDNU2	MD= 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm	18 № 23. 3 0=04 42 =1.8(10); 6 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42	14.4 Pym F F F F F F F F F F	1ЫНИ (8.11) =7.2(ія , ра °N; λ	айон =26.5	54°E; 7.7(1) 0.07	h=7 ; MS	КМ; H=1 6.9 7.1 7.1	7.5(3); 59 63 64	1. 1. 1.	.7
NDNU3 NDNU2	MD: 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m	18 № 23. 3 0=04 42 =1.8(10); 6 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42 42	14.4 PyM $\phi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 43.0 43.8	пыни (8.11) = 7.2(0.30 0.28	ія , ра °N; λ	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7 ; MS	КМ; ИН=1 6.9 7.1 7.1 7.2	7.5(3); 59 63 64	1. 1. 1. 1.7	.7
NDNU3 NDNU2	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg	18 № 23. 1 0=04 42 =1.8(10); 1 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42 42 42	14.4 Pyw $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 33.8	пыни (8.11) = 7.2(0.30 0.28	iя, ра °N; λ (10); 1	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7 ; MS	КМ; H=1 6.9 7.1 7.1	(7.5(3); 59 63 64 65	1. 1. 1. 1.7	.7 .7 .8
NDNU3 NDNU2 NDNU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg	18 № 23. 3 0=04 42 =1.8(10); 6 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 33.8 45.6	пыни (8.11) = 7.2(0.30 0.28	iя, ра °N; λ (10); 1	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7 ; MS	КМ; (H=1 6.9 7.1 7.1 7.2	7.5(3); 59 63 64 65	1. 1. 1. 1.7	.7 .7 .8
NDNU3 NDNU2 NDNU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg	18 № 23. 3 0=04 42 =1.8(10); 10 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>(мин 17.5 с)</i> <i>(Кр=7.9(3))</i> , 42 42 42 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 33.8 45.6 38.0	пыни (8.11) = 7.2(0.30 0.28	iя, ра °N; λ (10); 1	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7 ; MS	КМ; ИН=1 6.9 7.1 7.1 7.2	7.5(3); 59 63 64 65	1. 1. 1. 1.7	.7 .7 .8
NDNU3 NDNU2 NDNU NDNU1 HORU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg	18 Nº 23. 3 0=04 42 0=1.8(10); 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 33.8 45.6 38.0 54.2	пыни (8.11) = 7.2(0.30 0.28	iя, ра °N; λ (10); 1	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7 ; MS	КМ; H=1 6.9 7.1 7.1 7.2 7.5 6.8	63 64 65 1 76	1. 1. 1.7 1.7 5	.7 .7 .8
NDNU3 NDNU2 NDNU	Sm MD: 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg 164 ePn	18 № 23. 1 0=04 42 =1.8(10); 1 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> , <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 33.8 45.6 38.0 54.2 44.3	пыни (8.11) = 7.2(0.30 0.28	iя, ра °N; λ (10); 1	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7 ; MS	КМ; (H=1 6.9 7.1 7.1 7.2	63 64 65 1	1. 1. 1.7 1.7	.7 .7 .8
NDNU3 NDNU2 NDNU NDNU1 HORU STNU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg 164 ePn eSn	18 Nº 23. 3 0=04 42 0=1.8(10); 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> , <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 45.6 38.0 54.2 44.3 4.4	пыни (8.11) = 7.2(0.30 0.28	iя, ра °N; λ (10); 1	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7 ; MS	км; H=1 6.9 7.1 7.1 7.2 7.5 6.8	63 64 65 1 76	1. 1. 1.7 1.7 5	.7 .7 .8
NDNU3 NDNU2 NDNU NDNU1 HORU	Sm MD: 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg 164 ePn	18 № 23. 1 0=04 42 =1.8(10); 1 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> , <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 45.6 38.0 54.2 44.3 4.4 46.1	0.30 0.28 0.10	iя, ра °N; λ (10); 1	айон =26.5 ML=1	0.07 0.07	h=7; MS	КМ; H=1 6.9 7.1 7.1 7.2 7.5 6.8	63 64 65 1 76	1. 1. 1.7 1.7 5	.7 .7 .8 .9 .5
NDNU3 NDNU2 NDNU NDNU1 HORU STNU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg 164 ePn eSn 177 ePn Pm	18 Nº 23. 1 0=04 42 =1.8(10); i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Умин 17.5 с</i> , <i>Кр</i> = 7.9(3), 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 45.6 38.0 54.2 44.3 4.4 46.1 46.5	пыни (8.11) = 7.2(0.30 0.28	iя, ра °N; λ (10); 1	айон =26.5 ML=1	54°E; 7.7(1) 0.07	h=7; MS	км; H=1 6.9 7.1 7.1 7.2 7.5 6.8	7.5(3); 59 63 64 65 1 76 54 84	1. 1. 1.7 5 1.7 2.	.7 .7 .8 .9 .5
NDNU3 NDNU2 NDNU NDNU1 HORU STNU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg 164 ePn eSn 177 ePn	18 Nº 23. 1 0=04 42 =1.8(10); 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Мин 17.5с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 45.6 38.0 54.2 44.3 4.4 46.1 46.5 7.3	0.30 0.28 0.10	is, pa °N; λ IO); I	айон =26.5 ML=1	0.07 0.07	h=7; MS	км; H=1 6.9 7.1 7.1 7.2 7.5 6.8	7.5(3); 59 63 64 65 76 54 84 61	1. 1. 1.7 5 1. 2.	.7 .8 .8
NDNU3 NDNU2 NDNU1 HORU STNU RAKU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg 164 ePn eSn 177 ePn Pm eSn Sm	18 Nº 23. 1 0=04 42 =1.8(10); i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Мин 17.5с</i> , <i>Kp=7.9(3)</i> , 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 45.6 38.0 54.2 44.3 4.4 46.1 46.5 7.3 9.4	0.30 0.28 0.10	is, pa °N; λ IO); I	айон =26.5 ML=1	0.07 0.07	h=7; MS	км; H=1 6.9 7.1 7.1 7.2 7.5 6.8 7.7	7.5(3); 59 63 64 65 76 54 84 61	1. 1. 1. 1.7 5 1. 2. 1. 3	.7 .8 .9 .5
NDNU3 NDNU2 NDNU NDNU1 HORU STNU	Sm MD 50 ePg eSg 78 +iPg eSg 78 ePg 81 -iPg Pm m eSg Sm 91 -iPg eSg 123 ePg eSg 164 ePn eSn 177 ePn Pm eSn	18 Nº 23. 1 0=04 42 =1.8(10); i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 28 апреля <i>Мин 17.5с</i> <i>Кр</i> =7.9(3), 42 42 42 42 42 42 42 42 42 42	14.4 Pyw ; $\varphi = 4$ 27.0 34.1 31.7 42.4 31.9 32.3 32.4 32.6 43.0 43.8 45.6 38.0 54.2 44.3 4.4 46.1 46.5 7.3	0.30 0.28 0.10	is, pa °N; λ IO); I	айон =26.5 ML=1	0.07 0.07	h=7; MS	км; H=1 6.9 7.1 7.1 7.2 7.5 6.8	7.5(3); 59 63 64 65 76 54 84 61	1. 1. 1.7 5 1. 2.	.7 .8 .9 .5

									Про	долж	кение т	абли	цы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13 14	15	16 17
NSLU	229 ePn	0	42	53.9						7.6	80		2.0
	Pm	0	42	55.0	0.40			0.01	7.9				
	eSn	0	43	17.1									
	Sm	0	43	17.9	0.30	0.02	0.00				1.5		
	№ 2	4. 29 апро	еля. Черн	овиц	кая	обл.,	р-н	г.Нов	водн	естр	овск.		
			мин 45.7c;										
	MD	=1.4(4); 1	Kp = 6.2(4)	: <i>KD</i> =	=6.50	(4); N	IL=1	3(4):	MSI	I=1.2	2(4):		
NDNU	7.1 -iPg	ì	42	47.1	,			() /		6.4	45		1.3
	Pm	1	42	47.1	0.05			0.21	5.8				
	iSg	1	42	48.1									
	Sm	1	42	48.2	0.10	0.90	0.15				1.1		
	m	1	42		0.18			0.50				1.4	
NDNU3	11 -iPg	1	42	47.8						6.4	46		1.3
	Pm	1	42	47.8	0.08			0.30	6.0				
	m	1	42	47.9	0.12			0.31				1.4	
	eSg	1	42	49.2									
	Sm	1	42	49.3	0.10	0.34	0.20				1.0)	
NDNU2	15 +iPg	1	42	48.4						6.4	46		1.3
	Pm	1	42	48.4	0.10			0.07	6.2				
	+iSg	1	42	50.4									
	Sm	1	42	50.7	0.10	0.09	0.39				1.2		
	m	1	42	50.9	0.15			0.10				1.0	
NDNU1	18 iPg	1	42	48.8						6.8	54		1.5
	Pm	1	42	48.9	0.03			0.05	6.9				
	iSg	1	42	51.0									
	m	1	42	51.1	0.15			0.13				1.2	
	Sm	1	42	51.2	0.10	0.69	0.16				1.5		
			№ 26										
	1.00		2мин 0.8с	,							0.44		
			Kp = 8.7(4)		=8.2(6); N	1L=1	.6(<i>4);</i>	MSF				
KMPU	34 -iP	20	22	8.2						8.6	99		2.6
	iS	20	22	12.8									
CHRU	56 iS	20	22	18.5									
NDNU3	60 +iP	20	22	12.2						7.9	93		2.2
	Pm	20	22		0.10			0.04	8.7				
	iS	20	22	19.6			0.40				4.0		
	Sm	20	22		0.10	0.38	0.10	0.40			1.9		
	m	20	22		0.10			0.10			0.4	1.7	
NDNU	61 iP	20	22	12.5	0.10			0.15	0.5	7.9	94		2.2
	Pm	20	22		0.10			0.15	8.5				
	iS	20	22	20.1		0.14	0.17				1.5	,	
	Sm	20	22			0.14	0.17				1.7		
MIDNII II	m 71 :D	20	22		0.10			0.08		0.0	07	1.6	2.2
NDNU1	71 -iP	20	22	14.2				0.06	0.0	8.0	97		2.2
	Pm	20	22		0.10			0.06	9.0				
	iS Sm	20 20	22 22	23.0		0.44	0.20				2.2		
	Sm	20	22		0.10	0.44	0.29	0.10			2.2	1.8	
HORU	m 104 eP	20	22	19.3				0.10		7.9	94	1.0	2.2
HORU		20	22		0.20			0.01	8.5	1.7	7 4		۷.۷
	Pm	∠∪	22	19.8	0.20			0.01	0.3				

					Пролодж	ение таблицы 3.
1	2 3	4	5	6 7 8 9		13 14 15 16 17
	iS	20	22	2.8		20 21 20 20 21
	Sm	20	22	3.4 0.20 0.05 0.14		1.7
	m	20	22		0.01	1.2
KSV	120 iS	20	22	6.2	***	
SORM	125 iP	20	22	2.2		
STNU	167 iS	20	22	8.3		
MILM	221 iP	20	22	6.2		
MILLIM	iS	20	23	2.1		
				 Закарпатье, р-н 1	г.Хуст.	
				$\rho = 48.22$ °N; $\lambda = 23.2$		
				KD=6.3(2); ML=1.		
KODII	10 + :D-					44 1.2
KORU	10 +iPg	15	30	0.4	6.3	44 1.3
	-iSg	15	30	2.6	0.25	1.0
NICITI	m 16 P	15	30		0.25	1.2
NSLU	16 -ePg	15	30	1.8	6.4	45 1.3
	+eSg		30	4.7	0.00	1.0
DDIII	m 21 P	15	30		0.09	1.0
BRIU	21 ePg	15	30	2.0		45
	eSg	15	30	6.5	-	
	No			цкая обл., р-н г.Н		ск.
		$0 = 84 \ 3$	7мин 3с; (48.59°N; λ=27.4°E	h=2.4 км;	
	MD	=1.3(3); K	Kp = 6.4(3)	D=6.4(3); ML=1.3	(3); $MSH=1.3$	(3);
NDNU	2.7 -iPg	8	37	3.6	6.0	37 1.1
	Pm	8	37		0.35 6.0	
	eSg	8	37	4.1		
	Sm	8	37	4.1 0.10 2.68 0.09		1.0
	m	8	37	5.0 0.18	0.48	1.0
NDNU1	9.8 ePg	8	37	4.8	6.5	49 1.4
	Pm	8	37	4.8 0.02	0.06 6.6	
	eSg	8	37	6.0		
	Sm	8	37	6.1 0.08 0.09 1.45		1.5
	m	8	37	6.1 0.11	0.61	1.6
NDNU3	11 +iPg	8	37	4.8	6.6	50 1.4
	Pm	8	37	4.8 0.06	0.04 6.6	
	eSg	8	37	6.2		
	Sm	8	37	6.3 0.10 0.29 1.13		1.4
	m	8	37	6.4 0.13	0.20	1.1
NDNU2	17 eSg	8	37	7.9		
		№ 30. 2	27 мая. Л	овская обл., р-н г	.Дрогобич.	
				o=49.39°N; λ=23.4		
	MD			D=7.6(4); $ML=1.5$		(2).
MORS	42 ePg	21	56	5.9	7.6	82 2.0
WORD	eSg	21	56	3.4	7.0	02 2.0
STZU	74 ePg	21	56	2.3	7.5	80 2.0
5120	Pm	21	56		0.02 7.5	2.0
	m	21	56		0.03	1.3
	eSg	21	57	3.7	0.05	1.5
	Sm	21	57	4.9 1.40 0.01 0.06		1.3
MEZ	97 eSg	21	57	9.7		1.0
STNU	107 ePg	21	56	8.7	7.8	80 2.1
			20		,.0	

Продолжение таблицы 3.												
1	2 3	4	5	6 7	8	9	10	11	12			6 17
	eSg	21	57	13.3	Ü					10 1	. 120 12	V 17
NSLU	133 eSg	21	57	21.1								
KORU	139 ePg	21	57	4.1					7.4	72		1.9
110110	m	21	57	4.4 0.70			0.03		,	. –	1.7	1.,
	Pm	21	57	9.9 1.20			0.09	8.0			1.,	
	eSg	21	57	24.1			0.07	0.0				
	Sm	21	57	28.9 1.40	0.04	0.01				1	.4	
TRSU	149 eSg	21	57	26.7	0.01	0.01				-		
TROC	_		я. Черноі		бпп	_u r l	Нава	пиас	TNAD	CIC		
	312		л. терно Рмин 32.20							ck.		
	MD		Kp=5.1(3)	,						5(3).		
NDNU	4.4 -iPg	16	$\frac{1}{52}$ 52	33.4	(3), 101	L U.	0(3),	111.01	5.0	23		0.5
NDNO	Pm	16	52	33.4 0.05			0.08	4.8	5.0	23		0.5
	iSg	16	52	34.3			0.00	7.0				
	Sm	16	52	34.4 0.10	0.51	0.27				0	.6	
	m	16	52	34.5 0.15		0.27	0.25			0.	0.8	
NDNU3	8.1 ePg	16	52	34.2			0.23		5.2	26	0.0	0.7
TIDITOS	Pm	16	52	34.2 0.03			0.03	5.1	3.2	20		0.7
	eSg	16	52	35.6			0.03	5.1				
	Sm	16	52	35.6 0.08	0.10	0.26				0.	6	
	m	16	52	36.0 0.09		0.20	0.08			0.	0.6	
NDNU1	13 ePg	16	52	35.1			0.00		5.2	25	0.0	0.7
TUDITOT	Pm	16	52	35.2 0.02			0.06	5.4	3.2	20		0.7
	m	16	52	35.2 0.02			0.04	5.1			0.5	
	eSg	16	52	37.3			0.01				0.5	
	Sm	16	52	37.4 0.04	0.01	0.13				0.	6	
	Sili		2. 2 июня.				Cpai	IGBS		0.	.0	
			лин 52.9с;									
	MD		Kp=5.6(2)	,						7(2)		
BRIU	20 ePg	1	$\frac{1}{2}$ 2.0(2),	56.9	(0), 111	L U.	0(3),	111.01	5.5	30		0.8
Ditto	m	1	3	0.1 0.30			0.05		3.3	30	0.8	0.0
MUKU	28 ePg	1	2	58.7			0.05		5.3	27	0.0	0.7
Mone	eSg	1	3	1.5					0.0			0.7
MEZ	34 ePg	1	2	59.5					5.4	29		0.8
1,122	Pm	1	2	59.6 0.10			0.01	5.7				0.0
	eSg	1	3	4.1				•				
	m	1	3	4.5 0.25			0.02				0.7	
	Sm	1	3	4.9 0.20		0.05				0.		
KORU	41 ePg	1	3	0.7					5.7	33		1.0
	eSg	1	3	6.3								
	m	1	3	9.2 0.40			0.07				1.4	
BERU	44 ePg	1	3	1.3					5.8	35		1.0
	Pm	1	3	4.6 0.30			0.01	5.4				
	eSg	1	3	7.2								
	Sm	1	3	7.9 0.30	0.02	0.01				0.	.5	
	m	1	3	8.3 0.25			0.01				0.7	
NSLU	47 ePg	1	3	2.0					6.1	40		1.2
	eSg	1	3	8.3								
	m	1	3	10.5 0.23			0.01				0.6	
		№ 33.	4 июня.	Закарпа	гье, р	-н г.]	Мука	чев	0.			
				-			-					

								Про	долж	кение	табли	цы 3.
1	2 3	4	5	6 7	8	9	10	11	12	13 14		
		$0=24\ 191$	иин 8.3с;	$\sigma = 48.45$	$N: \lambda =$	22.86	6°E: h	=1.8	В км:			
			Kp=5.7(3)	,						9(3).		
MUKU	12 -iPg	2	19	10.7	(1), 11.	il o.	<i>>(1)</i> ,	11101	5.7	32		0.9
Moreo	Pm	2	19	10.7 0.1)		0.04	5.5	5.7	32		0.7
	-iSg	2	19	12.7	_		0.0.					
	m	2	19	12.8 0.2	5		0.07				0.8	
	Sm	2	19	13.0 0.1		0.07				0.		
BRIU	17 ePg	2	19	11.5					5.4	28		0.8
	Pm	2	19	11.5 0.1	5		0.02	6.1				
	eSg	2	19	14.4								
	Sm	2	19	15.7 0.1	5 0.10	0.24				1.	0	
	m	2	19	21.8 0.4	5		0.10				1.1	
BERU	28 ePg	2	19	13.8					5.7	33		1.0
	m	2	19	19.2 0.4	5		0.05				1.0	
KORU	38 eSg	2	19	20.6								
TRSU	40 eSg	2	19	21.5								
MEZ	49 eSg	2	19	24.5								
NSLU	52 eSg	2	19	25.9								
STZU	66 ePg	2	19	21.2					6.3	43		1.3
	Pm	2	19	24.8 0.4)			5.6				
	eSg	2	19	29.9	2	0.01				0	_	
	Sm	2	19	30.9 0.3		0.01	0.01			0.		
	m	2	19	33.3 0.3		1	0.01				0.6	
			4 июня.									
			?мин 4.9с;	,								
		=1.1(4); K	Kp = 6.2(2)		V(4); M	1L=1.	<i>I(3)</i> ;	MSF				
MUKU	12 -iPg	8	32	7.3	_				5.7	32		0.9
	Pm	8	32	7.4 0.1)		0.08	6.0				
	-iSg	8	32	9.3	_		0.42				4.0	
	m	8	32	9.5 0.2		0.05	0.13				1.0	
DEDI	Sm	8	32	9.6 0.1	0.37	0.27			5 0	1.	I	
BERU	17 ePg	8	32	8.3	1		0.10		5.9	36	1 1	1.1
DDIII	m 10 - D-	8	32	15.7 0.4	J		0.10		<i>5</i> 0	25	1.1	1.0
BRIU	18 ePg Pm	8 8	32 32	8.3	1		0.07	6.4	5.8	35		1.0
		8	32	10.1 0.1 11.2	J		0.07	0.4				
	eSg Sm	8	32	12.5 0.1	5 0.24	0.38				1.	3	
	m	8	32	18.2 0.5		0.56	0.17			1.	1.3	
KORU	35 eSg	8	32	16.5	,		0.17				1.5	
NSLU	53 eSg	8	32	21.9								
NoLe	Sm	8	32	24.2 0.3	0.05	0.00				0.	9	
STZU	74 ePg	8	32	18.8					6.6	49		1.4
	. 8		4 июня.		тье. n	-н г.]	Мукя	чев				
			мин 33.6с									
			Kp=5.4(1)	. ,						8(1).		
MUKU	12 -iPg	18		35.8	(<i>J</i>), <i>W</i>	ı <i>L-</i> ∪.	0(3),	WISI	5.3	27		0.7
IVIONO	Pm	18	0	35.8 35.9 0.1)		0.03	5.4	5.5	41		0.7
	-iSg	18	0	37.8	,		0.03	٥.٦				
	m	18	0	37.9 0.2	5		0.05				0.6	
	Sm	18	0	38.1 0.2		0.12				0.		
				12								

										Про	долх	кение	табли	цы 3.
1	2	3	4	5	6	7	8	9	10	11	12	13	14 15	16 17
BRIU	18 -e	Pg	18	0	37.2						5.4	28		0.8
	eS		18	0	39.6									
	m	-	18	0		0.55			0.06				0.9	
BERU	19 eP		18	0	36.5						5.6	31		0.9
	eS	_	18	0	40.6									
	m		18	0		0.30			0.05				0.8	
			No 36	. 7 июня.			ъе. n	-н г.]		чeв	n.			
				мин 14.6с								:		
	M			Kp = 8.0(7)	,									
MUKU	11 -iI		19	41	17.0		13), 1	VIL A	2.3(0)	, 111	7.1	63	•	1.7
MORO	Pr		19	41		0.10			0.87	7.8	/.1	05		1./
	-iS		19	41	19.0				0.07	7.0				
	m	-	19	41		0.23			1.50				2.1	
	Sr		19	41		0.15	1.00	3 92	1.50			,	2.0	
BRIU	17 -e		19	41	17.9		1.00	3.72			7.4	74	2.0	1.9
DIGO	Pr		19	41		0.10			0.45	8.4	7.4	7-		1.7
	eS		19	41	20.1				0.43	0.4				
	Sr		19	41			2.47	4 59					2.4	
	m		19	41		0.38	2.7/	7.57	2.30				2.5	
BERU	21 +e		19	41	17.9				2.50		7.7	84	2.5	2.0
DLICO	eS		19	41	21.7						,.,	0.		2.0
	m		19	41		0.32			1.40				2.3	
TRSU	35 eP		19	41	21.5				1.10		84	120	2.3	2.5
TRBC	Pn	_	19	41		0.20			0.22	8.2	0.1	120		2.3
	eS		19	41	26.9				0.22	0.2				
	Sr		19	41			0.27	0.48				1	1.8	
	m		19	41		0.28	0.27	0.40	0.30				1.9	
KORU	36 -iI		19	41	21.1	0.20			0.50		8.6	130	1.,	2.6
nonc	eS		19	41	27.1						0.0	150		2.0
	m		19	41		0.57			1.20				2.5	
UZH	46 +i		19	41	22.7				1.20		8.5	123	2.0	2.5
CZII	eS		19	41	29.3						0.5	123		2.3
NSLU	53 eP		19	41	23.7						8.1	102		2.3
1,020	Pn		19	41		0.20			0.03	8.0	0.1	102		
	eS		19	41	31.8									
	Sr		19	41			0.56	0.16				2	2.0	
	m		19	41		0.23			0.33				2.2	
MEZ	54 +e		19	41	23.8						7.9	94		2.2
	Pn	_	19	41		0.40			0.03	7.6				
		Sg	19	41	31.1									
	Sr		19	41			0.25	0.17				1	1.8	
STZU	71 +e		19	41	27.1						8.6	133		2.6
	Pr	_	19	41		0.40			0.07	8.0				
	eS		19	41	36.5									
	Sr		19	41			0.09	0.29				1	.9	
	m		19	41		0.28			0.13				1.9	
RAKU	109 eP		19	41	32.7				-		8.0	98	-	2.2
	Pr		19	41		0.20			0.06	8.2				
	eS		19	41	48.5									
	m	_	19	41		0.18			0.24				2.4	
	Sr		19	41			0.24	0.02				2	2.1	
		-	/		0							-	-	

									Про	долж	кение	табли	цы 3.
1	2 3	4	5	6	7	8	9	10	11	12			16 17
MORS	115 ePg	19	41	37.4						8.3	112		2.4
STNU	130 ePg	19	41	38.3							133		2.6
KMPU	271 ePn	19	41	59.0							154		2.8
	eSn	19	42	28.7									
HORU	281 eSn	19	42	31.5									
		№ 37	. 8 июня.	Зака	рпат	ъе. р	-н г.1	Мука	чев).			
			мин 43.2с										
	MD=		Kp = 6.6(5)	,							1(5):		
MUKU	12 -iPg	1	37	45.5		. , ,		-(-),		5.4	29		0.8
	Pm	1	37		0.10			0.12	6.0				
	+iSg	1	37	47.5									
	Sm	1	37		0.15	0.36	0.38					1.1	
	m	1	37		0.30			0.17				1.1	
BRIU	17 -ePg	1	37	46.3						5.8	34		1.0
	Pm	1	37		0.10			0.06	6.6				
	eSg	1	37	49.2									
	Sm	1	37			0.23	0.51					1.4	
	m	1	37	57.0	0.55			0.17				1.3	
BERU	26 ePg	1	37	47.4						7.2	68		1.8
	eSg	1	37	51.7									
	m	1	37	54.1	0.45			0.13				1.4	
KORU	37 ePg	1	37	50.3						7.4	66		1.9
	+eSg	1	37	55.9									
	m	1	37	56.7	0.30			0.12				1.5	
TRSU	38 eSg	1	37	56.1									
UZH	46 eSg	1	37	59.0									
MEZ	51 ePg	1	37	52.5						6.3	44		1.3
	Pm	1	37	54.3	0.40				7.5				
	eSg	1	37	59.9									
	Sm	1	38			0.03	0.03				(0.9	
	m	1	38		0.30			0.01				0.7	
NSLU	52 -ePg	1	37	52.5						6.2	41		1.2
	Pm	1	37		0.20			0.01	6.5				
	eSg	1	38	0.2									
	m	1	38		0.25			0.03				1.1	
	Sm	1	38			0.08	0.02					1.2	
STZU	68 ePg	1	37	56.3						6.6	50		1.4
	Pm	1	37		0.40			0.01	6.2				
	eSg	1	38	5.0		0.04							
	Sm	1	38			0.01	0.03	0.01			(0.9	
	m	1	38		0.25			0.01				0.8	
			10 июня.										
			9мин 17.1	,									
		=1.4(6); 1	Kp = 6.7(4)	; KD=	=6.5(6); M	L=1.	3(6);	MSF	I=1	3(4);		
MUKU	12 -iPg	20	29	19.3						5.5	29		0.8
	Pm	20	29	19.3	0.10			0.12	6.3				
	+iSg	20	29	21.3									
	Sm	20	29			0.51	0.45					1.2	
	m	20	29		0.30			0.19				1.2	
BERU	16 ePg	20	29	20.0						6.2	41		1.2

										Про	долж	кени	е таблі	ицы 3.
1	2	3	4	5	6	7	8	9	10	11	12	13	14 15	
	e	Sg	20	29	22.8									
	n	1	20	29	26.5	0.50			0.13				1.2	
BRIU	20 -	ePg	20	29	20.4						6.1	39		1.2
		m	20	29		0.20			0.09	7.2				
	e	Sg	20	29	24.3									
	S	m	20	29			0.20	0.78					1.6	
	n		20	29		0.70			0.20				1.5	
TRSU	33 e		20	29	28.4									
KORU	36 e	-	20	29	24.0						6.9	58		1.6
		iSg	20	29	29.7									
	n		20	29		0.70			0.13				1.6	
UZH	45 e	_	20	29	33.5									
NSLU	55 e	_	20	29	27.0						6.9	59		1.6
		m	20	29		0.30			0.01	6.6				
		Sg	20	29	34.5									
	n		20	29		0.20			0.03				1.1	
amar :		m	20	29			0.08	0.02					1.2	
STZU	74 e		20	29	30.7				0.01		7.2	67		1.8
		m	20	29		0.60			0.01	6.5				
		Sg	20	29	39.4		0.01	0.04					1 1	
		m	20	29			0.01	0.04	0.01				1.1	
	n		20	29		0.30		_	0.01				1.0	
				июня. Хм										
				мин 38.4с;										
	Ī	MD	=2.0(8); 1	Kp = 8.0(4)	: <i>KD</i> =	=7.6((8); N	1L=2.	0(4);	MSI.	H=2.	2(4);		
NDNU	7.7 +	iPg	21	49	39.7						6.7	52		1.5
	P	m	21	49	39.7	0.10			1.65	7.8				
	+	iSg	21	49	40.7									
	S	m	21	49	40.8	0.10	7.50	0.05					2.0	
	n		21	49		0.13			1.76				1.9	
NDNU2	9 +	iPg	21	49	39.9						6.7	54		1.5
		m	21	49		0.10			0.13	7.5				
	-6	eSg	21	49	41.0									
	n		21	49		0.09			0.95				1.7	
		m	21	49			4.70	1.50					2.0	
NDNU1	17 +		21	49	41.2						7.0	62		1.7
		m	21	49		0.05			0.75	8.0				
		iSg	21	49	43.3				1 (1				2.2	
	n		21	49		0.10	1.24	2.71	1.64				2.3	
NIDNII 12		m	21	49			1.24	2.71			77		2.1	2.0
NDNU3	20 -i	_	21	49 49	41.5	0.10			0.30	9.0	7.7	85		2.0
		m	21 21						0.30	0.9				
		eSg		49 40	43.9		2 60	7.51					2.6	
		m	21 21	49 49		0.10 0.10	3.08	1.31	1.20				2.6	
KMPU	64 +			49 49	44.1				1.20		7.9	96	۷.۷	2.2
IXIVIF U		_	21	49 49	56.3						1.7	90		۷.۷
HORU	90 -6	Sg -Pg	21	49 49	53.1						8.0	99		2.2
KSV	170 e		21	50	25.8						0.0	フフ		۷.۷
STNU	207 el		21	50	11.0						8.3	112		2.4
MORS	256 el		21	50	17.6							109		2.4
MOKS	250 6	1 11	<i>L</i> 1	50	17.0						0.2	10)		∠.¬

									Про	долж	кение	таблі	ицы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13 1	4 15	16 17
		No 4	11. 30 июн	ія. З	акар	пать	e, p-i	ı г.Х	VCT.				
			Рмин 35.9с		_		_		-	км:			
	MD:		Xp = 6.5(3);								2(3).		
NSLU	14 iPg	-1. 4 (3), 1 19	p-0.5(3),	38.6	,	J_j , W_j	L^{-1} .	3(3),	WISI	6.2	41		1.2
NSLU	Pm	19	2		0.10			0.08	6.7	0.2	41		1.2
	eSg	19	2	40.7				0.08	0.7				
	m	19	2		0.20			0.39				1.5	
	Sm	19	2			0.71	0.08	0.59			1.		
KORU	22 ePg	19	2	40.1	0.12	0.71	0.08			6.4	46	-	1.4
KOKO	Pm	19	2		0.20			0.13	6.4	0.7	70		1.7
	eSg	19	2	43.6				0.13	0.4				
	Sm	19	2		0.50	0.01	0.13				0.	0	
		19	2		0.60	0.01	0.13	0.18			0.	1.5	
TDCII	m 27 aPa	19	2	42.6				0.16		7.0	59	1.5	1.6
TRSU	37 ePg Pm		2		0.10			0.02	6.4	7.0	39		1.6
		19	2	48.0				0.02	0.4				
	eSg Sm	19 19	2			0.03	0.10				1.	1	
						0.03	0.10	0.03			1.		
MIIZII	m 52 oSc	19	2 2		0.20			0.03				0.9	
MUKU	52 eSg	19 N 42 16		54.4		_		г					
			июля. Ви										
			иин 56.9с;	,									
	MD	=1.3(3); K	Kp=6.9(2);	KD:	=6.4((3); M	IL=1.	1(3);	MSI.	I=1.3	3(2);		
NDNU1	19 +iPg	22	33	0.2						6.1	39		1.2
	Pm	22	33	0.3	0.05			0.05	6.4				
	+iSg	22	33	2.7									
	Sm	22	33	2.8	0.10	0.07	0.21				1.	.0	
	m	22	33		0.50			0.10				1.1	
NDNU3	27 -iPg	22	33	1.7						6.3	43		1.3
	Pm	22	33	1.8	0.10			0.07	7.5				
	+iSg	22	33	5.2									
	Sm	22	33	5.3	0.10	0.08	0.54				1.	.6	
	m	22	33		0.50			0.10				1.3	
NDNU	31 -iPg	22	33	2.3						6.8	55		1.6
	m	22	33	2.8	0.60			0.03				0.9	
	+iSg	22	33	6.2									
	_	3. 18 июл	ія. Черно			бл 1	р-н г.	Нов	олне	стро	вск.		
			иин 34.9c;										
	,			,						. 5 KM	,		
NIDNITI	0.0 . 'D		MD = 0.9(3))-5.0	(3); 1	ML-0).9(1)	,	<i>5</i> 2	27		0.7
NDNU	0.9 +iPg	13		35.1						5.3	27		0.7
	+iSg	13	50	35.2				0.61				0.0	
NIDNILI2	m	13	50		0.14			0.61		- 7	22	0.9	1.0
NDNU3	11 +ePg	13	50	36.8						5.7	33		1.0
NIDNITII	-eSg	13	50	38.3						<i>-</i> 0	2.4		1.0
NDNU1	12 ePg	13	50	36.6						5.8	34		1.0
	eSg	13	50	38.5		_		**					
	№ 4		ія. Черно								вск.		
		0 = 543	иин 8.1с; ф	$\rho = 48$.6°N,	· $\lambda = 2$	7.41°	E; h=	=1.9	км;			
	MD^{2}	=2.5(7): K	Xp = 8.6(4);	KD:	=8.50	7); M	L=2.	3(4):	MSI	H=2.4	4(4):		
NDNU	3 -iPg	5	3	8.7	,	//		(')		7.9	92		2.1
	6												

									Прод	кпод	кение	табли	цы 3.
1	2 3	4	5	6	7	8	9	10	11	12			6 17
	Pm	5	3	8.7 (0.10	ı		1.74	7.2		· ·		
	-iSg	5	3	9.3									
	Sm	5	3	9.3 (0.10	9.50	5.76				1	.7	
	m	5	3	10.2				9.61				2.3	
NDNU1	9.3 -iPg	5	3	9.6						8.0	96		2.2
	Pm	5	3	9.7 (0.05			1.10	8.2				
	+iSg	5	3	10.9									
	Sm	5	3		0.10	10.09	2.95				2	2.3	
	m	5	3	11.6 (3.55				2.3	
NDNU3	12 -iPg	5	3	9.9						8.4	118		2.4
	Pm	5	3	9.9 (0.05			0.53	9.2				
	-iSg	5	3	11.3									
	Sm	5	3		0.10	6.50	26.12				2	2.8	
	m	5	3	11.4 (1.60				2.1	
KMPU	70 +iPg	5	3	19.5						8.7	140		2.6
	-eSg	5	3	27.7									
HORU	99 ePg	5	3	24.4						8.8	141		2.6
	eSg	5	3	35.7									
KSV	176 ePn	5	3	36.2						9.0	155		2.8
	Pm	5	3	37.2 (0.30			0.02	9.7				
	eSn	5	3	57.3									
	Sm	5	4		0.17	0.20	0.46				2	2.7	
	m	5	4	4.3 (0.09				2.3	
STNU	214 ePn	5	3	41.6						8.9	153		2.7
	eSn	5	4	6.2									
RAKU	248 eSn	5	4	14.0									
MORS	264 eSn	5	4	18.2									
		. 19 ию	ія. Черн		ลฐก	бπ. т)-н г	Нова	лне	ctno	BCK		
			мин 6.3 <i>с</i> ,										
			(p=5.7(3))										
NDNU	3.5 + iPg	10	51	6.9	., (<i>-</i>), 1/1		0(0),	1,101,	5.7	32		0.9
TUDITE	Pm	10	51	6.9 (0.05			0.09	4.7	5.7	32		0.5
	+iSg	10	51	7.4	0.05			0.07	,				
	m	10	51	7.5 (0.07			0.31				0.9	
	Sm	10	51			0.41	0.27	0.51			().5	
							U 7 /						
NDNI 1	89 -iPo				0.07	0.71	0.57			5.6	32		() 9
NDNU1	8.9 -iPg Pm	10	51	7.8		0.41	0.37	0.16	5.8	5.6	32		0.9
NDNU1	Pm	10 10	51 51	7.8 7.9 (0.41	0.37	0.16	5.8	5.6	32		0.9
NDNU1	Pm -iSg	10 10 10	51 51 51	7.8 7.9 (9.0	0.02			0.16	5.8	5.6		.0	0.9
NDNU1	Pm -iSg Sm	10 10 10 10	51 51 51 51	7.8 7.9 (9.0 9.1 (0.02	0.08			5.8	5.6		1.0	0.9
	Pm -iSg Sm m	10 10 10 10 10	51 51 51 51 51	7.8 7.9 (9.0 9.1 (9.1 (0.02			0.16 0.16	5.8		1	1.0	
NDNU1	Pm -iSg Sm m 11 +iPg	10 10 10 10 10 10	51 51 51 51 51 51	7.8 7.9 (9.0 9.1 (9.1 (8.1	0.02 0.05 0.07			0.16		5.6			0.9
	Pm -iSg Sm m 11 +iPg Pm	10 10 10 10 10 10	51 51 51 51 51 51 51	7.8 7.9 (9.0 9.1 (9.1 (8.1 8.8 (0.02 0.05 0.07						1		
	Pm -iSg Sm m 11 +iPg Pm -iSg	10 10 10 10 10 10 10 10	51 51 51 51 51 51 51	7.8 7.9 (9.0 9.1 (9.1 (8.1 8.8 (9.5	0.02 0.05 0.07 0.07	0.08	0.51	0.16			33	1.0	
	Pm -iSg Sm m 11 +iPg Pm -iSg Sm	10 10 10 10 10 10 10 10 10	51 51 51 51 51 51 51 51 51	7.8 7.9 (9.0 9.1 (9.1 (8.1 8.8 (9.5 9.6 (0.02 0.05 0.07 0.07		0.51	0.16 0.03			33	1.0	
	Pm -iSg Sm m 11 +iPg Pm -iSg Sm m	10 10 10 10 10 10 10 10 10 10	51 51 51 51 51 51 51 51 51	7.8 7.9 (9.0 9.1 (9.1 (8.1 8.8 (9.5 9.6 (9.7 (0.02 0.05 0.07 0.07 0.10 0.10	0.08	0.51	0.16 0.03 0.06	6.5	5.7	33	1.0	
	Pm -iSg Sm m 11 +iPg Pm -iSg Sm m No 46	10 10 10 10 10 10 10 10 10 10 10 10	51 51 51 51 51 51 51 51 51 51	7.8 7.9 (9.0 9.1 (9.1 (8.1 8.8 (9.5 9.6 (9.7 (ОВИЦК ?	0.02 0.05 0.07 0.07 0.10 0.10	0.08 0.20 бл., ј	0.51 0.94 Э-н г.	0.16 0.03 0.06 Hob (6.5 одне	5.7 стро	33 1 9 BCK.	1.0	
	Pm -iSg Sm m 11 +iPg Pm -iSg Sm m No 46	10 10 10 10 10 10 10 10 10 10 5. 19 июл	51 51 51 51 51 51 51 51 51 51 71 71 75 75 75 75 75 75 75 75 75 75 75 75 75	7.8 7.9 9.0 9.1 9.1 8.1 8.8 9.5 9.6 9.7 00BULK3	0.02 0.05 0.07 0.07 0.10 0.10 ая о	0.08 0.20 σ., μ ον, λ	0.51 0.94 Э-н г. =27.4	0.16 0.03 0.06 Hob (1°E;	6.5 Эдне о <i>h=2</i> .	5.7 стро 4 км	33 19 BCK.	1.0	
NDNU3	Pm -iSg Sm m 11 +iPg Pm -iSg Sm m .iSg MD=	10 10 10 10 10 10 10 10 10 5. 19 MoJ	51 51 51 51 51 51 51 51 51 51 49. Черн 60.0(3)	7.8 7.9 9.0 9.1 9.1 8.1 8.8 9.5 9.6 9.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.05 0.07 0.07 0.10 0.10 ая о	0.08 0.20 σ., μ ον, λ	0.51 0.94 Э-н г. =27.4	0.16 0.03 0.06 Hob (1°E;	6.5 Эдне о <i>h=2</i> .	5.7 стро 4 км I=1	33 19 BCK.	1.0	0.9
	Pm -iSg Sm m 11 +iPg Pm -iSg Sm m No 46	10 10 10 10 10 10 10 10 10 10 5. 19 июл	51 51 51 51 51 51 51 51 51 51 71 71 75 75 75 75 75 75 75 75 75 75 75 75 75	7.8 7.9 9.0 9.1 9.1 8.1 8.8 9.5 9.6 9.7 00BULK3	0.02 0.05 0.07 0.07 0.10 0.10 as o 2.59° 6.0(0.08 0.20 σ., μ ον, λ	0.51 0.94 Э-н г. =27.4	0.16 0.03 0.06 Hob (1°E;	6.5 Эдне <i>h=2.</i> <i>MSH</i>	5.7 стро 4 км	33 19 BCK.	1.0	

									Про	доля	кени	е та	абли	цы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13			16 17
	-iSg	15	10	58.6										
	Sm	15	10	58.7	0.10	0.23	0.72					0.6		
	m	15	10		0.14			0.45					1.0	
NDNU1	9.2 -iPg	15	10	59.1						6.1	39			1.1
	Pm	15	10	59.1	0.03			0.40	5.8					
	m	15	10		0.06			0.20					1.1	
	+iSg	15	11	0.4										
	Sm	15	11	0.4	0.05	1.03	0.44					1.3		
NDNU3	10 +iPg	15	10	59.3						6.1	40			1.2
	Pm	15	10		0.10			0.13	6.8					
	+iSg	15	11	0.7										
	Sm	15	11			0.22	1.98	0.40				1.6		
	m	15	11		0.09			0.19					1.1	
	№ 4		тя. Черн о									•		
		0 = 164 17	7мин 37.9с	c ; $\varphi = 4$	48.55	°N; λ	.=27.	32°E,	: h = 1	2 км;	•			
	MD	=1.0(3); H	Kp = 5.8(3)	: <i>KD</i> =	=5.90	3); M	L=1.	2(3);	MSI	H=1.	0(3)	,		
NDNU	6.3 + iPg	16	17	39.0	,					5.5	30			0.8
	Pm	16	17	39.0	0.05			0.07	4.7					
	+iSg	16	17	39.9										
	Sm	16	17	40.0	0.10	0.31	0.12					0.6		
	m	16	17	40.2	0.14			0.61					1.4	
NDNU3	9.8 +iPg	16	17	39.6						5.9	37			1.1
	Pm	16	17	39.6	0.10			0.06	6.2					
	+iSg	16	17	41.0										
	Sm	16	17	41.0	0.10	0.30	0.74					1.2		
	m	16	17		0.09			0.15					1.0	
NDNU1	17 -iPg	16	17	40.6						6.3	43			1.3
	Pm	16	17		0.07			0.08	6.5					
	+iSg	16	17	42.8										
	m	16	17		0.14			0.18					1.3	
	Sm	16	17			0.12		_				1.2		
			9 августа											
		$0 = 14 \ 39$ _A	иин 26.1c;	$\varphi=4$.	5.79°	Ν; λ=	= <i>27.6</i>	4°E; .	h=1	4 км;	•			
		MD = 3.20	(11); Kp=9	9.7(9)	; <i>KD</i>	=9.70	(11);	MSH	=2.6	(10)	•			
GIUM	55 P	1	39	36.9		,	,							
	S	1	39	43.4										
MILM	155 P	1	39	52.4										
	S	1	40	11.0										
KIS	162 P	1	39	52.8						10.1	138			3.4
	Pm	1	39	53.7	0.17			0.11	9.7					
	S	1	40	12.3										
	Sm	1	40		0.23	0.75	0.29					2.9		
SORM	267 P	1	40	5.6										
	S	1	40	36.0										
NDNU3	302 ePn	1	40	10.1						10.5	325			3.6
	Pm	1	40		0.20			0.09	9.9					
	eSn	1	40	43.4	0.20	0.20	0.04					2.7		
CHELL	Sm	1	40		0.30	0.20	0.04					2.7		
CHRU	308 eSn	1	40	44.5										
NDNU1	313 ePn	1	40	11.9										

									Про	долх	кени	е таб	блицы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13	14 1	
	Pm	1	40	19.5	0.20		II.	0.09	9.8				
	eSn	1	40	45.7									
	Sm	1	40	53.1	0.20	0.10	0.08					2.4	
NDNU	313 ePn	1	40	11.8						9.4	251		3.0
	Pm	1	40	19.8	0.30			0.05	9.4				
	eSn	1	40	46.0									
	Sm	1	40	58.6	0.30	0.05	0.05					2.1	
KMPU	322 ePn	1	40	12.6						9.0	261		2.8
	eSn	1	40	48.0									
NDNU2	322 eSn	1	40	47.7									
KSV	342 ePn	1	40	15.6									
	Pm	1	40	25.0	0.20			0.02	9.7				
	eSn	1	40	52.9									
	Sm	1	41	2.1	0.30	0.00	0.11					2.8	
HORU	392 eP	1	40	21.5						8.6	281		2.6
	Pm	1	40	37.2	0.30			0.00	9.9				
	eSn	1	41	4.0									
	Sm	1	41	14.6	0.50	0.09	0.08					2.8	
STNU	403 eP	1	40	23.1						10.7	355		3.7
	eSn	1	41	7.2									
NSLU	416 ePn	1	40	24.6									
	Pm	1	40	35.4	0.60			0.01	9.3				
	eSn	1	41	9.9									
	Sm	1	41	51.4	0.50	0.02	0.01					1.8	
MORS	467 ePn	1	40	31.7						9.6	334		3.1
	eSn	1	41	21.8									
SEV	493 P	1	40	33.1						9.8	90		3.2
	Pm	1	40	34.3	0.31			0.01	9.4				
	S	1	41	24.5									
	Sm	1	41	26.2	0.36	0.01	0.01					3.0	
SIM	514 S	1	41	29.4									
	Sm	1	41	29.6	0.25	0.01	0.00					2.7	
SUDU	583 P	1	40	43.1						10.1	132		3.4
	Pm	1	40	44.0	0.30			0.01	9.8				
	S	1	41	43.7									
	Sm	1	41	48.3	0.53	0.02	0.01					3.0	
		№ 49	9. 9 авгус	га. К	арпа	ты, ј	райоі	н Вра	анча	١.			
		$0 = 184 \ 3_{M}$									1;		
			MD=	=3.3(2	2): <i>KI</i>	D = 10	0.0(2)						
MILM	234 Pn	18	3	57.7	_		(),						
NDNU3	330 -iPn	18	4	8.6						9.7	225		3.2
	iSn	18	4	45.0									
NDNU	340 iPn	18	4	9.7						10.2	283		3.5
		0. 12 авгу	уста. Вин			бл., r	-н с.]	Налл	нест				
	0 12 0		ин 41.5с;									•	
	МГ			,									
MDMIT		0=1.5(5); 1				JJ, 1V	L-I.	+ (3);	WISI		'	•	1.2
NDNU	6.1 -iPg	4	0	42.7				0.26	5 A	6.3	42		1.3
	Pm	4	0		0.10			0.30	5.4				
	-iSg	4	0	43.6		0.20	0.14					0.5	
	Sm	4	0	43./	0.10	0.28	0.14					0.5	

									Про	долх	кение т	аблицы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13 14	
	m	4	0		0.20			0.48				1.3
NDNU1	9.8 +iPg	4	0	43.3						6.6	51	1.5
1,21,01	Pm	4	0		0.03			0.11	6.0	0.0		1.0
	-iSg	4	0	44.6				0.11	0.0			
	m	4	0		0.15			0.28				1.3
	Sm	4	0			0.61	0.26	0.20			1.1	
NDNU3	16 -iPg	4	0	44.3	0.00	0.01	0.20			6.7	52	1.5
TIDITOS	Pm	4	0		0.07			0.06	7.5	0.7	32	1.5
	-iSg	4	0	46.3	0.07			0.00	1.5			
	Sm	4	0		0.08	1.48	0.10				1.8	•
		4	0		0.10	1.40	0.10	0.36			1.0	1.6
MDMLD	m 17 iDa				0.10			0.30		67	52	
NDNU2	17 -iPg ⊥iSα	4 4	0	44.4						6.7	53	1.5
IZMDLI	+iSg		0	46.5						(0	5 0	1.6
KMPU	71 ePg	4	0	53.3						6.9	58	1.6
	eSg	4	1	1.6				_				
			. 19 авгус		_		_	_				
			ин 39.8с;									
	MD=3	.2(20); Kp	0=9.6(11);	KD=	9.7(2	20); N	ISH=	<i>3.0(1</i>	0);	IPV	=3.0(1)	;
MILM	217 P	9	5	14.6								
KIS	222 iP	9	5	15.3						9.0	168	2.8
	Pm	9	5	15.5	0.22			0.08	9.1			3.0
	iS	9	5	40.8								
	Sm	9	5	41.0	0.30		0.17					
	m	9	5	41.0	0.30	0.17	0.11					
KSV	300 iP	9	5	23.4								
	Pm	9	5	25.2	0.30			0.03	9.5			
	eS	9	5	57.9								
	Sm	9	6	5.3	0.25	0.08	0.03				3.0)
RAKU	304 iP	9	5	24.2						9.7	225	3.2
	Pm	9	5		0.10			0.05	9.8			
	eS	9	5	58.7								
	Sm	9	5	59.1	0.10	0.05	0.12				3.2	!
KMPU	307 eP	9	5	24.5						9.9	238	3.3
	iS	9	5	59.1								
NDNU3	307 P	9	5	24.4						9.8	231	3.2
	Pm	9	5		0.10			0.02	9.7			
	iS	9	5	58.9								
	Sm	9	6		0.10	0.11	0.01				3.2	!
NDNU	317 iP	9	5	25.9		*				9.9	240	3.3
1,21,0	Pm		5		0.30			0.03	9.2			2.2
	iS	9	6	0.8				0.05	J. <u>2</u>			
	Sm		6			0.03	0.01				2.7	,
NDNI I	320 eP		5	26.2		0.05	0.01				250	
NDNOI	Pm	9	5	26.2	0.10			0.03	0.7	7.7	230	3.3
	iS	9	6	1.9				0.03).1			
	Sm	9	6			0.00	0.05				3.2	,
NCLLI	352 P	9	5	29.3		0.03	0.03				212	3.1
INDLU	Pm	9	5	∠2.3 32.1	0.50			0.05	QΩ	2.0	Z1Z	3.1
	eS	9	6	8.0				0.03	7.0			
	Sm	9	6			0.04	0.03				2.9)
KODII		9	5			0.04	0.03				2.9	3.2
KORU	300 P	9	3	31.0						9.8	231	3.2

										Про	доля	кение	таблицы 3.
1	2	3	4	5	6	7	8	9	10	11	12	13	14 15 16 17
•	I	Pm	9	5	33.7	0.60			0.14	9.6		•	
	6	eS	9	6	11.2								
	5	Sm	9	6	24.3	0.95	0.03	0.02				2	2.7
TRSU	370 -	⊦iP	9	5	31.7						10.0	250	3.3
	I	Pm	9	5	32.2	0.10			0.05	9.9			
	6	eS	9	6	12.8								
	5	Sm	9	6	20.7	0.20	0.03	0.06				3	3.0
HORU	379 i	P	9	5	33.0						9.7	223	3.2
	i	S	9	6	14.1								
BRIU	386 I	•	9	5	34.0						9.7	226	3.2
	I	Pm	9	5	35.4	0.30			0.03	9.4			
	6	eS	9	6	15.9								
	5	Sm	9	6	17.0	0.10	0.01	0.01				3	3.0
BERU	398 i	P	9	5	36.2								
	6	eS	9	6	18.4								
MUKU	412 I		9	5	37.2						9.7	217	3.1
	I	Pm	9	5	38.7	0.40			0.05	9.8			
	6	eS	9	6	21.2								
	5	Sm	9	6	22.5	0.10	0.01	0.01				2	2.7
MORS	419 i		9	5	38.7						9.4	191	3.0
		eS	9	6	23.1								
HOLU	434 i		9	5	40.0						9.7	227	3.2
	6	eS	9	6	25.9								
				. 24 август									
				ин 48.9с; ф									
			MD = 3.7(1	'3); Kp=11	.3(10)); KI	D=10	0.6(13)	B); MS	SH=.	3.9(9);	
GIUM	142 I		7	13	17.4			·	-		, ,		
KIS	239 -	⊦iP	7	13	27.1						11.2	100	4.0
	I	Pm	7	13	27.2	0.20			0.25	11.7			
	i	S	7	13	53.2								
	5	Sm	7	13	55.0	0.50	2.80	6.40				4	1.1
CHRU	296 I		7	13	32.9						11.1	428	3.9
	I	Pm	7	13	34.2	0.50			0.25	11.0			
	6	eS	7	14	6.5								
	9	Sm	7	14	9.9	0.80	0.77	0.11				4	1.0
KSV	313 -		7	13	35.5								
KMPU	324 -		7	13	35.9						10.7	361	3.7
IIII O		eS	7	14	10.9						10.7	501	5.7
NDNU3			7	13	36.2						10.6	2/15	3.7
NDNOS						0.20			0.25		10.0	343	3.7
		Pm	7	13		0.30			0.35	11./			
		eS	7	14	10.7								
		Sm	7	14			1.83	0.01					1.4
NDNU	335 -	·iΡ	7	13	37.4						10.4	306	3.5
	I	Pm	7	13	37.9	0.30			0.53	11.0			
	6	eS	7	14	12.7								
		Sm	7	14			0.04	0.23				3	3.5
NDNU1			7	13	37.7						10.4		3.6
		Pm	7	13		0.30			0.23				2.0
		eS	7	14	13.1				J. 2 J	• •			
	,		,	17	13.1								

								Про	долх	кение т	аблиц	ы 3.
1	2 3	4	5	6 7	8	9	10	11	12		15 16	
	Sm	7	14	31.3 0.50	0.14	0.82	U			4.1		
NSLU	360 +iP	7	13	40.8								
STNU	369 eP	7	13	42.1								
KORU	373 +iP	7	13	41.6								
TRSU	377 + iP	7	13	41.7								
BRIU	393 -iP	7	13	44.2								
HORU	396 eP	7	13	43.9					10.7	357		3.7
	Pm	7	13	45.2 0.60			0.15	11.4				
	eS	7	14	20.7								
	Sm	7	14	28.1 0.90	0.43	0.30				4.0		
BERU	404 eP	7	13	44.6								
MUKU		7	13	47.0								
MORS	431 eP	7	13	49.1								
UZH	454 eP	7	13	50.9								
LVV	496 eP	7	13	55.9								
SEV	585 eP	7	14	5.6					10.7	210		3.7
SE,	Pm	7	14	7.0 0.37			0.06		10.7	210		5.,
	iS	7	15	3.8			0.00	10.7				
	Sm	7	15	10.0 0.34	0.03	0.02				3.6		
SIM	609 -iP	7	14	8.3	0.03	0.02			10.1			3.4
SIIVI	Pm	7	14	13.7 0.40			0.05		10.1	140		5.4
	iS	7	15	9.2			0.03	11./				
YAL	623 eP	7	14	10.9					10.3	152		3.5
IAL	eS	7	15	14.6					10.5	132		3.3
ALU	637 -iP	7	14	12.4					10.3	167		3.5
ALU	Pm	7	14	12.4			0.03	111	10.5	107		3.3
	eS	7	15				0.03	11.1				
				16.3	0.06	0.04				20		
CLIDII	Sm	7	15	23.0 0.47	0.00	0.04			10.7	3.8		2.7
SUDU	678 -iP	7	14	17.3			0.05		10.7	192		3.7
	Pm	7	14	20.3 0.47			0.05	11./				
	iS	7	15	24.9	0.00	0.12				4.0		
	Sm	7	15 D	30.1 0.52					TO	4.0		
	№ 53. 29			кая обл.,						иловць	J.	
				$\varphi = 48.86^{\circ}$								
			Kp = 7.1(2)	KD=6.86	4); M	L=1.	4(2);	MSI		5(2);		
NDNU	32 + iPg	21	0	44.3					6.6	50		1.4
	Pm			44.5 0.20				6.9			1.6	
	m	21	0	44.5 0.20			0.16				1.6	
	eSg Sm	21 21	0	48.2 53.9 0.20	0.07	0.01				0.8		
KMPU	85 -iPg	21	0	53.9 0.20	0.07	0.01			6.7	52		1.5
HORU	89 ePg	21	0	53.6					6.9	58		1.6
11010	Pm	21	0	53.9 0.20			0.01	7.3	5.7	20		1.0
	eSg	21	1	4.4			1					
	m	21	1	4.6 0.20			0.02				1.2	
	Sm	21	1	4.7 0.20	0.05	0.15				1.8		
STNU	222 ePn	21	1	14.9					7.2	66		1.8
	eSn	21	1	41.4								
				120								

				Продолжение таблицы 3.
1	2 3	4	5	6 7 8 9 10 11 12 13 14 15 16 17
		№ 54.	10 сентя	ября. Карпаты, район Вранча.
	0=	=19ч 45мі	ин 56.3с;	$\hat{\varphi} = 45.63^{\circ}N; \lambda = 26.51^{\circ}E; \hat{h} = 121.6 \text{ км};$
				; KD=11.7(22); MSH=4.4(14); MPV=4.5(1);
GIUM	134 P	19	46	21.8
0101/1	S	19	46	39.4
MILM	228 P	19	46	31.5
KIS	234 +iP	19	46	32.7 12.1 311 4.5
	Pm	19	46	32.8 0.30 2.40 13.2
	Pm	19	46	32.8 1.60 0.16 4.5
	iS	19	46	57.3
	Sm	19	46	57.4 0.25 29.00
	m	19	46	57.9 0.18 25.60 21.70
CHRU	299 -iP	19	46	39.3 11.7 563 4.3
	Pm	19	46	39.8 0.40 1.41 12.9
	iS	19	47	11.9
	Sm	19	47	14.5 0.60 6.81 5.89 5.0
KSV	317 -iP	19	46	41.3 500
	Pm	19	46	41.9 0.40 0.48 12.5
	iS	19	47	15.7
	Sm	19	47	18.0 0.20 3.68 0.43 4.7
KMPU	326 +iP	19	46	42.5 11.6 543 4.2
	iS	19	47	16.5
NDNU	336 -iP	19	46	43.8 11.7 585 4.3
	Pm	19	46	44.6 0.30 2.65 12.5
	iS	19	47	18.7
	Sm	19	47	20.9 0.30 1.31 0.56 4.3
NSLU	367 iP	19	46	47.7 11.8 605 4.3
	Pm	19	46	48.8 0.60 0.15 12.0
	iS	19	47	27.3
COTTO LE L	Sm	19	48	2.9 0.95 1.28 0.46 4.3
STNU	374 +iP	19	46	48.9 11.8 608 4.3
KODII	iS	19	47	28.8
KORU	380 eP	19	46	49.0 11.8 610 4.3
	Pm	19	46	50.6 0.50 0.71 12.3
	iS	19	47	29.2
TDCII	Sm	19	47 46	56.4 1.05 1.36 0.42 4.4 49.9 11.7 581 4.3
TRSU	384 iP	19 19	46 46	49.9 11.7 581 4.3 55.6 0.60 0.44 12.0
	Pm Sm	19	48	3.0 1.05 0.87 0.06 4.2
MEZ	Sm 392 -iP	19	46	51.7 11.7 586 4.3
MILL	792 -11 Pm	19	46	52.7 0.50 0.32 12.0
	iS	19	47	32.3
	Sm	19	47	37.6 0.80 0.88 0.32 4.2
HORU	398 iP	19	46	51.4 11.7 584 4.3
HORU	iS	19	47	33.8
BRIU	400 -iP	19	46	51.6 11.7 586 4.3
DIGO	Pm	19	46	52.0 0.30 0.26 12.4
	iS	19	47	33.3
	Sm	19	47	58.0 1.65 0.60 1.36 4.4
BERU	411 -iP	19	46	52.4 11.6 560 4.2
	iS	19	47	36.2

									Про	кпоп	кени	е таблиц	ы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13	14 15 16	
MUKU	426 iP	19	46	54.8			-			11.8	617		4.4
	iS	19	47	39.9									
MORS	436 -iP	19	46	56.9						11.8	608		4.3
	iS	19	47	41.6									
UZH	461 -iP	19	46	59.4						11.7	566		4.3
	iS	19	47	47.2									
SHIU	464 iP	19	46	59.6						11.8	617		4.4
	iS	19	47	47.7									
LVV	501 -iP	19	47	4.1						11.7	567		4.3
	Pm	19	47		1.10			0.61	12.9				
	iS	19	47	55.6									
	Sm	19	48		1.40	1.09	1.36					4.6	
SEV	576 eP	19	47	12.1						11.6	305		4.2
	Pm	19	47		0.44			0.11	12.2				
	eS	19	48	8.6									
	Sm	19	48		0.44	0.37	0.41					4.4	
SIM	600 eP	19	47	15.2							340		
	eS	19	48	14.3									
	Pm	19	47		0.53			0.30	12.0				
	Sm	19	48		0.45	0.25	0.30					4.4	
YAL	614 eP	19	47	17.1							340		
	eS	19	48	17.7							2.50		
ALU	628 eP	19	47	18.6	0.20			0.00	100	11.6	350		4.2
	Pm	19	47		0.38			0.08	12.2				
	eS	19	48	21.2	0.40	0.26	0.00					4.5	
GLIDII	Sm	19	48		0.40	0.36	0.02			11.	2.40	4.5	4.0
SUDU	670 eP	19	47	24.0	0.70			0.20	12.2	11.6	340		4.2
	Pm	19	47		0.78			0.29	13.3				
	eS	19	48	30.0	0.60			0.41				1.5	
EEO	Sm	19	48	32.8	0.68			0.41		11.6	255	4.5	4.2
FEO	695 eP	19	47	28.5	0.20			0.06	12.2	11.6	333		4.2
	Pm	19	47	39.2	0.39			0.06	12.2				
	eS	19	48	37.6	0.21	0.21	0.12					1.1	
KEDII	Sm	19 19	48 47		0.51	0.21	0.13					4.4	
KERU	777 eP			35.9				Г					
			2 октябр										
			мин 36.9с,	,									
		MD=3.3	R(6); $Kp=1$	0.0(4	!); KI	D = 9.9	9(6);	<i>MSH</i>	=3.0	(6);			
GIUM	34 P	9	19	43.6									
	S	9	19	48.6									
MILM	199 P	9	20	9.7									
	S	9	20	32.9									
KIS	208 P	9	20	11.0						9.6	90		3.1
	Pm	9	20		0.30			0.20	10.0				
	S	9	20	34.5									
	Sm	9	20		0.60	0.50	0.80					3.1	
CHRU	375 eS	9	21	13.9									
	Sm	9	21		0.82	0.08	0.37					3.0	
NDNU	377 +iP	9	20	30.6						9.8	235		3.2
	eS	9	21	9.1									
KMPU	388 eP	9	20	33.5						9.8	237		3.2

The color of th										Про	долж	кение т	аблиць	ы 3.
Note	1	2 3	4	5	6	7	8	9	10					
Pm 9 20 35.4 0.05 0.02 1.0		eS	9	21	9.5									
Ses	KSV	408 eP	9		35.4						9.8	234		3.2
Series						0.05			0.02	11.0				
SEV														
Pm						0.38	0.02	0.29						
Note	SEV								0.04		10.1	138		3.4
HORU 458 cS 9 21 29.6 0.44 0.00 0.01 3.0 Sm 9 21 47.5 0.49 0.43 0.13 3.2 STNU 468 cS 9 21 31.7 MORS 532 cS 9 21 47.7 SUDU 554 P 9 20 52.9 0.01 9.5 Sm 9 21 0.8 0.39 0.01 9.5 Sm 9 22 0.2 0.29 0.01 0.01 3.1						0.27			0.01	9.4				
HORU						0.44	0.00	0.01				2.0		
STNU 468 eS 9 21 47.5 0.49 0.43 0.13 3.2 MORS 532 eS 9 21 31.7 31.7 31.8 31.8 31.8 31.8 31.8 32.8 31.8 31.8 32.8 31.8 32.8 31.8 32.2 32.2 32.2 32.2 32.2 32.3 38.8 32.2 32.3 38.8 32.2 42.2 41.2 41.2 42.2 42.2 12.2 42.2 12.2 42.2 42.2 12.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42	HODII					0.44	0.00	0.01				3.0		
STNU MORS 468 eS 9 21 47.7	HORU					0.40	0.42	0.12				2.2		
MORS 532 eS 9 21 47.7	CTNII					0.49	0.43	0.13				3.2		
SUDU														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											10.1	140		3 /
	3000					0.39			0.01	9.5	10.1	140		э.т
Sm 9 22 0.2 0.29 0.01 0.01 3.1 No 56. 2 oktra6ps. Jebobeckas oбл., p-H r.Cxhdhhula. (0=23 y 5muh 22.3 c; φ=49.35°N; λ=23.38°E; h=2 κm; (14 ePg 23 5 25.2 6.1 40 1.2 (25 eSg 23 5 30.7 6.2 42 1.2 (26 eSg 23 5 37.3 6.2 42 1.2 (26 eSg 23 5 37.3 6.2 42 1.2 (27 eSg 23 5 37.3 6.2 42 1.2 (28 eSg 23 5 37.5 6.2 6.1 40 1.2 (28 eSg 23 5 37.5 6.2 6.1 40 1.2 (28 eSg 23 5 37.5 6.2 6.1 40 1.2 (28 eSg 23 5 37.5 6.2 6.1 40 1.2 (28 eSg 23 5 37.5 6.2 6.1 40 1.2 (28 eSg 23 5 37.5 6.2 6.1 40 1.2 (28 eSg 23 5 37.5 6.2 6.1 4.4 6.1 7.5 7.5 7.5 (28 eSg 23 5 37.5 6.1 6.4 6.4 7.5 7.5 7.5 7.5 7.5 7.5 (28 eSg 23 5 37.5 6.1 6.2 6.2 6.1 6.4 6.4 6.4 6.4 6.5 (28 eSg 23 5 37.5 6.4 6.4 6.4 6.4 6.4 6.5 (28 eSg 23 5 37.5 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 (28 eSg 23 5 37.5 6.4 6.4 6.4 6.4 6.4 6.4 6.4 (28 eSg 23 5 37.5 6.4 6.4 6.4 6.4 6.4 6.4 6.4 (28 eSg 23 5 37.5 6.4 6.4 6.4 6.4 6.4 6.4 6.4 (28 eSg 23 5 37.5 6.4 6.4 6.4 6.4 6.4 6.4 6.4 (28 eSg 23 6.3 6.						0.57			0.01	7.5				
Ne 56. 2 οκτября. JIbbobecas οδρ., p-н г. Схидница. 0=23 ч 5мин 22.3c; φ=49.35°N; λ=23.38°E; h=2 κм; MD=1.2(2); KD=6.2(2); SHIU 14 ePg 23 5 25.2 6.1 40 1.2 Ne 5 ePg 23 5 25.2 6.1 40 1.2 Ne SPg 23 5 30.7 6.2 42 1.2 NE SPg 23 5 30.7 6.2 42 1.2 NE SPg 23 5 30.7 6.2 42 1.2 NE SPg 45 60 42 2 1.2 ME SPg 45 50 20.2 7.0 60 1.6 Pm 4 55 20.8 0.13 0.61 7.9 relight 4 55 20.8 0.13 0.61 7.9 relight 4 55 22.3 0.20 4.70 2.5						0.29	0.01	0.01				3.1		
		2111							ı r C	VIJTL	шпа			
SHIU												•		
SHIU 14 ePg cSg 23 5 25.2 6.1 40 1.2 eSg 23 5 27.4 23 5 27.4 23 5 30.7 6.2 42 1.2 eSg 23 5 37.3 30.7 6.2 42 1.2 eSg 23 5 37.3 37.3 30.2 42 1.2 eSg 2.2 eSg 23 5 37.3 37.3 30.2 42 1.2 eSg 48.25 eSg 23.5 eSg 23.5 eSg 37.5 eSg 48.25 eSg 23.5 eSg 23.6 eSg 23.1 eSg 49.2 eSg 23.1 eSg 49.2 eSg 23.2 eSg 1.6 eSg<			0-2343						00 E,	n-2	км,			
MORS 45 ePg 23 5 30.7 6.2 42 1.2 eSg 23 5 30.7 6.2 42 1.2 eSg 23 5 37.3 Nº 57.6 oktrθps. 3akaphate, p-H c.Hukhee Cenhue. O=44 55mh 18.4c; φ=48.25°N; λ=23.55°E; h=4.5 κm; MD=2.0(12); Kp=8.0(7); KD=7.5(12); ML=1.8(8); MSH=1.6(8); NSLU 9 -iPg 4 55 20.2 7.0 60 1.6 Pm 4 55 20.8 0.13 0.61 7.9 -iSg 4 55 22.0 0.20 4.70 2.5 Sm 4 55 23.1 0.14 8.86 0.61 2.2 MEZ 30 +iPg 4 55 23.8 7.6 81 2.0 Pm 4 55 24.0 0.19 0.06 8.0 iSg 4 55 28.3 0.15 0.19 1.6 Sm 4 55 28.3 0.15 0.19 1.6 Sm 4 55 29.4 0.14 0.17 0.81 7.5 77 1.9 FM 4 55 29.9 Sm 4 55 29.9 Sm 4 55 29.9 Sm 4 55 29.9 Sm 4 55 37.5 0.79 1.14 7.5 2.5 BRIU 40 -iPg 4 55 36.1 0.28 0.23 1.0 TRSU 47 ePg 4 55 37.5 0.79 0.10 8.2 iSg 4 55 36.1 0.28 0.23 7.6 82 2.0 Pm 4 55 36.1 0.28 0.23 7.7 86 2.1 m 4 55 36.1 0.28 0.23 7.7 86 2.1 m 4 55 36.1 0.28 0.23 7.7 86 2.1 m 4 55 36.1 0.28 0.23 7.7 86 2.1 m 4 55 36.1 0.28 0.23 7.7 86 2.1 m 4 55 36.1 0.28 0.23 7.7 86 2.1 TRSU 47 ePg 4 55 27.2 7.6 82 2.0 Pm 4 55 36.1 0.28 0.23 7.7 86 2.1 TRSU 47 ePg 4 55 36.1 0.28 0.23 7.7 86 2.1 TRSU 47 ePg 4 55 36.1 0.28 0.23 7.7 86 2.1 TRSU 47 ePg 4 55 36.1 0.28 0.23 7.7 86 2.1 TRSU 47 ePg 4 55 36.6 0.37 0.32 0.01 1.7 TRSU 47 ePg 4 55 36.6 0.37 0.32 0.01 1.7 m 4 55 36.6 0.37 0.32 0.01 1.7 TRSU 47 ePg 4 55 36.6 0.37 0.32 0	SHIU	14 еРо	23		,	,, 11	0.	2(2),			6.1	40		1.2
MORS 45 ePg 23 5 30.7 6.2 42 1.2 eSg 23 5 37.3 No 57. 6 okthopa. Sakaphate, p-H c.Hukhee Cejhuhe. 0=44 55muh 18.4c; φ=48.25°N; λ=23.55°E; h=4.5 κm; $MD=2.0(12)$; $Kp=8.0(7)$; $KD=7.5(12)$; $ML=1.8(8)$; $MSH=1.6(8)$; NSLU 9 ·iPg 4 55 20.2 7.0 60 1.6 Pm 4 55 22.8 0.13 0.61 7.9 -iSg 4 55 22.3 0.20 4.70 2.5 Sm 4 55 23.1 0.14 8.86 0.61 2.2 MEZ 30 +iPg 4 55 23.8 7.6 81 2.0 Pm 4 55 23.8 7.6 81 2.0 Pm 4 55 24.0 0.19 0.06 8.0 iSg 4 55 27.9 m 4 55 28.3 0.15 0.19 1.6 Sm 4 55 27.2 0.44 0.49 8.2 iSg 4 55 27.2 7.7 86 2.1 iSg 4 55 36.1 0.28 0.23 7.7 86 2.1 iSg 4 55 36.1 0.28 0.23 7.6 82 2.0 iSg 4 55 36.1 0.28 0.23 7.6 82 2.0 iSg 4 55 36.6 0.37 0.32 0.01 1.7	Sinc										0.1	10		1.2
No. 57. 6 октября. Закарпатье, р-н с.Нижнее Селище. $0=4v$ 55мин $18.4c$; $\varphi=48.25^\circ N$; $\lambda=23.55^\circ E$; $h=4.5$ км; $MD=2.0(12)$; $Kp=8.0(7)$; $KD=7.5(12)$; $ML=1.8(8)$; $MSH=1.6(8)$; NSLU $P=7.5(12)$;	MORS										6.2	42		1.2
No 57. 6 октября. Закарпатье, р-и с.Нижнее Селище. $0=4$ 4 55мин 18.4 С; $\varphi=48.25^{\circ}$ N; $\lambda=23.55^{\circ}$ E; $h=4.5$ км; $MD=2.0(12)$; $Kp=8.0(7)$; $KD=7.5(12)$; $ML=1.8(8)$; $MSH=1.6(8)$; NSLU 9 -iPg 4 55 20.2 7.0 60 1.6 Pm 4 55 20.8 0.13 0.61 7.9 -iSg 4 55 22.3 0.20 4.70 2.5 Sm 4 55 22.3 0.20 4.70 2.5 Sm 4 55 23.1 0.14 8.86 0.61 2.2 MEZ 30 +iPg 4 55 23.8 7.6 81 2.0 Pm 4 55 23.8 7.6 81 2.0 Pm 4 55 27.9 0.06 8.0 Sm 4 55 29.4 0.19 0.06 8.0 Sm 4 55 29.4 0.14 0.17 0.81 1.9 KORU 33 +iPg 4 55 29.4 0.14 0.17 0.81 1.9 KORU 33 +iPg 4 55 29.9 5 1.9 Pm 4 55 29.9 5 1.10 Sm 4 55 29.9 5 1.14 0.03 1.14 0.03 1.0 Sm 4 55 29.9 5 1.14 0.03 1.14 0.03 1.0 RORU 40 -iPg 4 55 25.8 7.7 7.7 86 2.1 m 4 55 37.5 0.79 1.14 0.03 1.14 0.25 BRIU 40 -iPg 4 55 25.8 7.2 0.44 0.23 1.14 0.25 FRSU 47 ePg 4 55 36.1 0.28 0.23 7.6 82 2.0 Pm 4 55 36.1 0.28 0.23 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 Sm 4 55 34.5 5 34.5		_												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		стября. За	карп	атье	е, р-н	c.Hi	ижне	e Ce	лищ	e.		
NSLU			$0 = 44 \ 55$ N	ин 18.4с;	$\varphi = 48$	2.25°	N; λ=	23.5.	5°E;	h=4	5 км;	•		
NSLU		MD=	=2.0(12); 1	Kp = 8.0(7)	KD=	7.5(12); 1	ML=1	1.8(8)	; MS	H=1	.6(8);		
MEZ	NSLU					,	ĺ					, ,		1.6
MEZ 30 +iPg		Pm	4	55	20.8	0.13			0.61	7.9				
MEZ Sm 4 55 23.1 0.14 8.86 0.61 7.6 7.6 81 2.0 MEZ 30 +iPg 4 55 23.8 23.8 0.19 0.06 8.0 7.6 81 2.0 Pm 4 55 24.0 0.19 0.06 8.0 8.0 7.6 81 2.0 Pm 4 55 24.0 0.19 0.19 0.19 0.10 8.0 7.6 81 2.0 RORU 33 +iPg 4 55 29.4 0.14 0.17 0.81 0.81 7.5 77 1.9 RORU 18g 4 55 27.2 0.44 0.03 0.49 8.2 7.5 77 1.9 RORU 18g 4 55 29.9 5m 4 55 31.1 0.51 0.41 0.03 7.7 86 2.1 BRIU 40 -iPg 4 55 37.5 0.79 0.11 0.23 7.7 86 2.1 TRSU 47 ePg 4 55 36.1 0.28 0.23 0.02 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 ISg 4 55 34.5 34.5 34.5 Sm 4 55 38.6 0.37 0.32 0.01 7.6 82 2.0 RISG 4 55 34.5 34.5 34.5 34.5 Sm 4 55 38.6 0.37 0.32 0.01 3.17 3.17 M 4 55 38.6 0.37 0.32 0.01 3.17 3.17 M 4 55 38.6 0.37 0.32 0.01 3.17 3.17 M 4 55 38.6 0.37 0.32		-iSg	4	55	22.0									
MEZ 30 +iPg 4 55 23.8 7.6 81 2.0 Pm 4 55 24.0 0.19 0.06 8.0 1.2 1.2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.9 1.6 1.9		m	4		22.3	0.20			4.70					
Pm			4			0.14	8.86	0.61						
Sig	MEZ										7.6	81		2.0
M 4 55 28.3 0.15 0.19 1.6 Sm 4 55 29.4 0.14 0.17 0.81 7.5 1.9 KORU 33 +iPg 4 55 24.4 7.5 77 1.9 Pm 4 55 27.2 0.44 0.49 8.2 7.5 77 1.9 Pm 4 55 29.9 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.7 1.7 7.7 1.7 1.7 7.7 1.7 1.7 1.7 7.7 1.7 1.7 7.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1						0.19			0.06	8.0				
KORU Sm 4 55 29.4 0.14 0.17 0.81 7.5 77 1.9 Pm 4 55 27.2 0.44 1.55 27.2 0.44 1.55 27.2 0.44 1.0 0.49 8.2 1.0 1.6 1						0.15			0.10				1.0	
KORU 33 +iPg 4 55 24.4 7.5 77 1.9 Pm 4 55 27.2 0.44 0.49 8.2 55 1.6 1							0.17	0.01	0.19			1.0		
Pm 4 55 27.2 0.44 0.49 8.2 iSg 4 55 29.9 Sm 4 55 31.1 0.51 0.41 0.03 1.14 m 4 55 37.5 0.79 1.14 2.5 BRIU 40 -iPg 4 55 25.8 7.7 86 2.1 m 4 55 36.1 0.28 0.23 7.6 82 2.0 TRSU 47 ePg 4 55 27.2 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 iSg 4 55 34.5 34.5 1.7 1.7 Sm 4 55 38.6 0.37 0.32 0.01 1.7 1.7 1.7 m 4 55 60.0 0.77 0.19 1.9 1.9	KODII					0.14	0.1/	0.81			7.5			1.0
iSg 4 55 29.9 Sm 4 55 31.1 0.51 0.41 0.03 1.6 m 4 55 37.5 0.79 1.14 2.5 BRIU 40 -iPg 4 55 25.8 7.7 86 2.1 m 4 55 36.1 0.28 0.23 1.9 1.9 TRSU 47 ePg 4 55 27.2 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 1.7 iSg 4 55 34.5 1.7 1.7 1.7 m 4 55 38.6 0.37 0.32 0.01 1.7 1.7 m 4 55 60.0 0.77 0.19 1.9 1.9	KUKU	_				0.44			0.40	0 2	7.3	//		1.9
Sm 4 55 31.1 0.51 0.41 0.03 1.6 m 4 55 37.5 0.79 1.14 2.5 BRIU 40 -iPg 4 55 25.8 7.7 86 2.1 m 4 55 36.1 0.28 0.23 1.9 TRSU 47 ePg 4 55 455 27.2 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 2.0 iSg 4 55 34.5 34.5 38.6 0.37 0.32 0.01 1.7 m 4 55 60.0 0.77 0.19 1.9						0.44			0.49	0.2				
BRIU 40 -iPg m 4 55 4 55 25.8 7.7 86 2.1 M 40 -iPg m 4 55 36.1 0.28 0.23 1.9 7.7 86 2.1 TRSU 47 ePg 4 55 27.2 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 18g 4 55 34.5 8m 4 55 38.6 0.37 0.32 0.01 m 4 55 60.0 0.77 0.19 1.9						0.51	0.41	0.03				1.6		
BRIU 40 -iPg 4 55 25.8 7.7 86 2.1 m 4 55 36.1 0.28 0.23 1.9 TRSU 47 ePg 4 55 27.2 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 iSg 4 55 34.5 Sm 4 55 38.6 0.37 0.32 0.01 1.7 m 4 55 60.0 0.77 0.19 1.9							0.71	0.03	1 1/			1.0		
TRSU	BRIII					0.77			1.17		77	86	2.3	2.1
TRSU 47 ePg 4 55 27.2 7.6 82 2.0 Pm 4 55 30.4 0.27 0.10 8.2 iSg 4 55 34.5 Sm 4 55 38.6 0.37 0.32 0.01 1.7 m 4 55 60.0 0.77 0.19 1.9	Ditto	_				0.28			0.23		,.,	00	1.9	2.1
Pm 4 55 30.4 0.27 0.10 8.2 iSg 4 55 34.5 Sm 4 55 38.6 0.37 0.32 0.01 1.7 m 4 55 60.0 0.77 0.19 1.9	TRSU					J. _ U			0.23		7.6	82		2.0
iSg 4 55 34.5 Sm 4 55 38.6 0.37 0.32 0.01 1.7 m 4 55 60.0 0.77 0.19 1.9						0.27			0.10	8.2		~-		
Sm 4 55 38.6 0.37 0.32 0.01 1.7 m 4 55 60.0 0.77 0.19 1.9														
m 4 55 60.0 0.77 0.19 1.9						0.37	0.32	0.01				1.7		
BERU 67 +iPg 4 55 28.4 80						0.77			0.19				1.9	
	BERU	67 +iPg	4	55	28.4							80		

									Про	долж	кение	таблиц	ы 3.
1	2 3	4	5	6	7	8	9	10	11	12		4 15 16	
	Pm	4	55		0.37			0.05	7.8				
	iSg	4	55	39.3	0.57			0.05	7.0				
	m	4	55		0.30			0.06				1.6	
	Sm	4	55		0.13	0.07	0.00	0.00			1	.3	
MUKU	68 iPg	4	55	30.4		0.07	0.00			7.7	87	.5	2.1
Wicke	Pm	4	55		0.18			0.05	8.0	/·/	07		2.1
	iSg	4	55	40.2				0.05	0.0				
	Sm	4	55		0.22	0.02	0.10				1	.4	
	m	4	55		0.30	0.02	0.10	0.04			1	1.4	
STNU	87 ePg	4	55	35.9				0.01		7.6	81	1	2.0
BINO	eSg	4	55	47.2						7.0	01		2.0
HOLU	92 iPg	4	55	34.3						7.4	75		1.9
HOLO	eSg	4	55	48.0						7.4	13		1.7
MORS	102 ePg	4	55	37.9						7.6	82		2.0
UZH	102 er g 102 eSg	4	55	50.9						7.0	02		2.0
OZII	Sm	4	55		1.05	0.01	0.05				1	.4	
SHIU	109 ePg	4	55	39.2		0.01	0.03			7.6	81	.7	2.0
SHIO	_		55 55	53.9						7.0	01		2.0
KSV	eSg	4	55 55	39.1						7.6	82		2.0
K5 v	112 +iPg Pm	4 4	55 55		0.60			0.02	8.1	7.0	02		2.0
		4	55 55	54.4				0.02	0.1				
	eSg	4				0.06	0.00				1	5	
	Sm		55 55		0.37	0.06	0.00	0.02			1	.5	
MMDD	m 210 Dm	4 4	55 55		0.68			0.02				1.4	
KMPD	218 Pn			54.0						77	0.4		2.0
KMPU	218 iPn	4	55 56	54.4 20.6						7.7	84		2.0
HODH	iSn	4 4	56	26.4									
HORU	237 eSn							Т					
			8 октября										
			мин 36.9с;							км;			
			MD = 1.5(4)); KL	0=6.6	(4); I	ML=I	1.5(3)	;				
KMPU	77 +iPg	23	0	49.5						6.2	42		1.2
	eSg	23	0	58.7									
KSV	106 ePg	23	0	54.6						6.8	55		1.5
	eSg	23	1	6.5									
	m	23	1	9.9	0.20			0.02				1.4	
NDNU	111 -iPg	23	0	55.1						6.4	47		1.4
	m	23	0	55.4	0.30			0.05				1.8	
	eSg	23	1	8.1									
HORU	148 eSg	23	1	18.3									
	m	23	1	21.6	0.40			0.01				1.4	
STNU	164 ePn	23	1	2.5						7.0	62		1.7
	eSn	23	1	22.6									
		№ 59). 24 октя(ря.	Зака	рпат	ье, р	-н г.І	Брид	[.			
			3 33.9c										
	MD		Kp = 6.8(3);	,							2/3).		
BRIU	11 ePg	-1.3(4), 1 5	23	35.1	U. 7 (τ <i>)</i> , 1VI	ட−1.	J(J),	171131	1-1.2 5.9	2(<i>3)</i> , 36		1.0
DIXIU	Pm	5	23		0.30			0.06	6.7	5.7	50		1.0
		5	23	36.6				0.00	0.7				
	-iSg Sm	5	23		0.15	0.26	1.05				1	.4	
		5	23		0.13	0.20	1.03	0.35			1	1.4	
	m	3	23	71./	0.00			0.55				1.4	

									Про	долж	кение т	габлиг	ы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13 14		
MUKU	17 iPg	5	23	36.1			-			6.4	47		1.4
	Pm	5	23		0.10			0.11	6.7	• • •			
	m	5	23		0.13			0.13	0.7			1.2	
	iSg	5	23	38.8									
	Sm	5	23		0.20	0.03	0.30				1.	1	
KORU	32 ePg	5	23	39.7		0.05	0.50			6.6	51	-	1.5
none	iSg	5	23	44.0						0.0	51		1.5
TRSU	35 eSg	5	23	44.2									
NSLU	47 ePg	5	23	41.8						6.4	47		1.4
1,526	Pm	5	23		0.20			0.01	7.0	0	• •		
	+iSg	5	23	48.8	0.20			0.01	7.0				
	Sm	5	23		0.25	0.06	0.04				1.	1	
	m	5	23		0.20	0.00	0.01	0.04			1.	1.2	
	111					ua n	0¥01					1.2	
			0 октября										
	1.00		28мин 3.7с	,							0 (2)		
			Kp = 8.7(1)			4); M	L=I.	8(2);	MSF				
KMPU	92 eP	21	28	19.9						7.7	86		2.1
	iS	21	28	32.3									
NDNU	96 -iP	21	28	20.7						7.6	81		2.0
	+iS	21	28	33.5									
	m	21	28		0.22			0.07				1.8	
KSV	148 eP	21	28	29.4						7.6	82		2.0
	Pm	21	28		0.07			0.01	8.7				
	iS	21	28	46.8									
	Sm	21	28			0.01	0.14				2.		
	m	21	28		0.17			0.03				1.7	
HORU	162 iS	21	28	51.5									
	Sm	21	28	54.5	0.39	0.01	0.12				2.0	0	
STNU	205 iP	21	28	37.3						7.7	83		2.0
	eS	21	29	1.7									
		№ 61.	31 октябр	ря. За	акарі	пать	е, р-н	г.Иј	эшаг	за.			
		$0 = 164 \ 3_{\text{N}}$	ин 32.4с;	$\varphi=4\delta$	8. <i>3°N</i>	$\gamma; \lambda = 2$	23.09	$^{\circ}E$; h	=10.	l км;			
	MD=	1.7(10); 1	Kp = 7.2(7)	KD:	=7.10	10); 1	ML=1	1.6(6)	; MS	H=1	.6(7);		
BRIU	6.8 +iPg	16	3	34.3		- / -		(/		7.1	65		1.7
	Pm	16	3	34.5	0.20			0.95	7.1				
	m	16	3	34.5	0.20			0.93				1.9	
	iSg	16	3	36.3									
	Sm	16	3	36.3	0.20	4.57	4.06				1.5	9	
KORU	16 -iPg	16	3	35.5						7.1	65		1.7
	Pm	16	3	35.9	0.30			0.86	7.0				
	m	16	3		0.10			1.00				2.1	
	eSg	16	3	38.0									
	Sm	16	3	38.4	0.40	0.22	0.51				1	3	
TRSU	24 -iPg	16	3	37.5						7.2	65		1.8
	Pm	16	3	37.5	0.10			0.28	7.5				
	m	16	3	37.6	0.10			0.37				1.9	
	iSg	16	3	41.6									
	Sm	16	3		0.20	0.28	1.18				1.5	9	
NSLU	29 -iPg	16	3	37.9						7.2	68		1.8
	Pm	16	3	38.4	0.10			0.12	7.5				

									Про	долх	кение	габли	цы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13 14		
	m	16	3	38.4 (0.10			0.11				1.4	
	eSg	16	3	42.6									
	Sm	16	3	44.4 (0.30	1.07	0.15				2.	0	
MUKU	34 ePg	16	3	39.4						7.1	65		1.7
	Pm	16	3	42.3 (0.30			0.07	7.1				
	m	16	3	42.5				0.04	,			1.0	
	eSg	16	3	44.5									
	Sm	16	3	46.0 (0.30	0.17	0.41				1.	7	
MEZ	40 ePg	16	3	40.7	0.50	0.17	0.11			6.9	57	,	1.6
1,122	Pm	16	3	44.3 (0.60			0.01	6.8	0.,			1.0
	eSg	16	3	45.1	0.00			0.01	0.0				
	Sm	16	3	52.1 (0.80	0.09	0.01				1.	1	
HOLU	58 -iPg	16	3	41.8	0.00	0.07	0.01			7.1	64	1	1.7
Hole	eSg	16	3	50.0						/ • 1	0.		1.,
RAKU	85 ePg	16	3	45.8						7.0	59		1.6
KAKU	Pm	16	3	50.0	1 20			0.04	7.1	7.0	3)		1.0
		16	3	51.4				0.04	/.1			1.5	
	m eSg	16	3	58.9	1.00			0.04				1.5	
	Sm	16	4		0.40	0.04	0.08				1.	5	
MORS		16	3	52.0	0.40	0.04	0.08			7.1	64	3	17
MOKS	111 ePg eSg	16	4	7.3						/.1	04		1.7
CTNII	114 ePg		3	53.3						6.9	57		1.6
STNU		16	4	9.4						0.9	37		1.6
	eSg	16	*					T/					
			1 ноября										
			мин 30.7с	. ,						км;			
			MD = 0.7(2)		=5.2	(2); I	ML=0).6(2)	;				
BRIU	23 -iPg	2	21	35.2						5.0	24		0.6
	eSg	2	21	38.6									
	m	2	21	39.2 (0.10			0.04				0.9	
NSLU	27 ePg	2	21	35.9						5.4	28		0.8
	eSg	2	21	39.8									
	m	2	21	40.3 (0.20			0.01				0.4	
		№ 6	4. 3 ноябр	оя. Кај	рпа	гы, р	айон	ı Bpa	нча				
			ин 58.4c;								;		
		MD=3.70	18); Kp=1	1.2(5);	: KD	=10.	6(18)	: MS	H=3	.9(6)	:		
GIUM	140 P	13	10	24.8			(/	_		(/			
	S	13	10	44.0									
MILM	237 P	13	10	34.5									
KIS	242 P	13	10	35.3							156		3.7
1110	Pm	13	10	35.5 (0.14			0.48	11.1		100		0.,
	S	13	11	0.8				01.0					
	Sm	13	11		0.40	2.00							
	m	13	11			2.00	1 40						3.8
CHRU	304 ePn	13	10	41.4	0.57	2.00	1.10			10.6	347	•	3.7
cinto	Pm	13	10	42.2 (0.40			0.15	113	10.0	517		3.7
	eSn	13	11	14.8	o. 10			0.13	11.5				
	Sm	13	11	15.7 (0.50	0.38	1 09				4.	2	
KSV	321 ePn	13	10	43.9	0.50	0.50	1.07			10.7		-	3.7
RAKU	321 eFn	13	10	44.3							323		3.6
KMPU	332 ePn	13	10	44.8						10.5			3.7
IXIVII U	334 CI II	13	10	77.0						10.7	334		3.1

										Про	долх	кени	іе та	аблиці	ы 3.
1	2	3	4	5	6	7	8	9	10	11	12	13	14		
	· · · · ·	eSn	13	11	19.0								1		
NDNU	343	ePn	13	10	46.3						10.6	350			3.7
		eSn	13	11	21.8										
NSLU	368		13	10	49.7						10.5	319			3.6
STNU	377		13	10	51.4							342			3.7
KORU	380		13	10	51.0						10.5				3.6
MEZ	393		13	10	52.8							324			3.6
BRIU	401		13	10	53.6							316			3.6
HORU	404		13	10	53.9							330			3.6
		Pm	13	10		0.20			0.04	11.4					
		eSn	13	11	35.5										
		Sm	13	11			0.60	0.26					4.1		
BERU	411		13	10	54.3	0.00	0.00	0.20			10.6	349			3.7
MUKU	427		13	10	56.9							343			3.7
MORS	439		13	10	59.3							332			3.6
SHIU	466		13	11	2.5						10.5				3.6
SEV	582		13	11	14.0							187			3.7
DL V		Pm	13	11		0.38			0.03	11.1	10.7	107			5.1
		S	13	12	13.3	0.56			0.03	11.1					
		Sm	13	12		0.46	0.09	0.08					3.9		
SIM	606		13	11	16.3	0.70	0.07	0.00				180			
SIIVI		S	13	12	17.2							100			
		Sm	13	12			0.08	0.06					3.8		
YAL	620		13	11	19.3		0.08	0.00				180			
IAL												100			
ALU	634	S	13 13	12 12	23.5 25.0										
ALU		Sm	13	12			0.04	0.02					2 7		
CLIDII						0.51	0.04	0.03			10.7	102	3.7		27
SUDU	676		13 13	11 11	26.1	0.42			0.02	11.2		192			3.7
		Pm							0.02	11.2					
		S Sm	13	12 12	33.8		0.07	0.05					2 0		
		Sm	13				0.07		ATC.				3.8		
				15 ноября											
	7			ин 24.8c; (Кр=8.8(9);)).		
TRSU		+iPg	, ,				11), 1	VIL -2	2.5()	, 1V1 k	7.9	92.7			2.1
IKSU		_	2 2	42	27.8				2 27	0.5	1.9	92			2.1
		Pm		42		0.20			3.37	8.5					
		-iSg	2	42	30.3	0.15	12.02	2 07					2.4		
		Sm	2	42			13.02	3.8/	(00				2.4	2.0	
KODII		m :D-	2	42		0.13			6.08		7.0	02		2.8	2.1
KORU		-iPg	2	42	28.8				4.2.4	0.1	7.9	92			2.1
		Pm	2	42		0.20			4.34	9.1					
		eSg	2	42	31.6		0.72	10.24					2.0		
		Sm	2	42			0.73	10.34					2.6		
DDIII		m	2	42		0.23			11.63		7.0	0.5		3.2	2.2
BRIU		+iPg	2	42	31.7				0.40		7.9	95			2.2
		Pm	2	42		0.30			0.19	9.3					
		eSg	2	42	35.8										
		m	2	42		0.13			1.07					2.5	
		Sm	2	42			0.70	3.86					2.6		
NSLU		+iPg	2	42	32.0							104			2.3
		Pm	2	42	32.1	0.20			0.07	9.2					

									Про	долж	кение	табли	цы 3.
1	2 3	4	5	6	7	8	9	10	11	12		4 15 1	
	eSg	2	42	36.6					-			II	
	Sm	2	42	37.8	0.30	3.96	0.32				2	2.7	
	m	2	42	38.5	0.15			1.97				2.8	
BERU	37 -iPg	2	42	31.9						8.3	115		2.4
	Pm	2	42	33.7	0.20			0.27	8.8				
	eSg	2	42	36.8									
	m	2	42	37.3	0.15			0.94				2.5	
	Sm	2	42	37.4	0.20	1.53	0.10				2	2.3	
MUKU	53 ePg	2	42	35.1						8.4	117		2.4
	Pm	2	42	36.4	0.20			0.05	8.8				
	eSg	2	42	42.7									
	Sm	2	42	43.7	0.20	0.12	0.80				2	2.2	
	m	2	42	45.0	0.18			0.26				2.1	
MEZ	64 ePg	2	42	37.8									
	eSg	2	42	44.9									
RAKU	84 ePg	2	42	39.7						8.4	119		2.4
	Pm	2	42	40.1	0.20			0.03	8.5				
	eSg	2	42	50.7									
	Sm	2	42			0.01	0.20				1	.8	
	m	2	42		0.28			0.52				2.6	
UZH	86 +ePg	2	42	41.1						8.4	120		2.5
	Pm	2	42		0.30			0.01	8.3				
	eSg	2	42	51.5									
	Sm	2	42			0.16	0.10				1	.8	
	m	2	42		0.28			0.06				1.7	
STNU	132 ePg	2	42	48.6									
	eSg	2	43	7.8									
SHIU	134 +ePg	2	42	48.8						8.4	120		2.5
MORS	138 ePg	2	42	50.0							121		2.5
KSV	153 ePg	2	42	52.1						8.5	127		2.5
	Pm	2	42		0.30			0.01	9.2				
	eSg	2	43	13.0									
	Sm	2	43	14.6	0.40	0.08	0.29				2	2.4	
	m	2	43	17.4	0.32			0.10				2.3	
CHRU	216 eSn	2	43	24.6									
KMPU	260 ePn	2	43	4.6							130		
	eSn	2	43	33.1									
HORU	281 eSn	2	43	39.8									
NDNU	326 ePn	2	43	13.3							130		
	eSn	2	43	52.0									
		№ 66.	15 ноябр	я. За	карп	атье	, р-н	c.Tp	осни	к.			
			ин 0.7с; ф										
			(p=7.5(3))										
TRSU	11 +iPg	3	2	3.8	,	0), 111		, (5),	171.01	7.4	73		1.9
TRBC	Pm		2		0.10			0.28	7.0	/ . ¬	13		1.7
		3						0.40	7.0				
	-iSg	3	2	6.3		0 1 1	1 40				4	_	
	Sm	3	2			0.11	1.40				I	.5	
	m	3	2		0.10			0.50				1.8	
KORU	19 ePg	3	2	4.9						7.4	74		1.9
	Pm	3	2	5.4	0.30			0.40	7.4				

								Про	долх	кение	табли	цы 3.
1	2 3	4	5	6 7	8	9	10	11	12			6 17
	eSg	3	2	7.8			L					
	Sm	3	2	8.4 0.30	0.13	0.70				1	.5	
		3	2	8.5 0.20	0.13	0.70	0.72			1.	2.1	
DDIII	m 27 . D						0.72		7.5	70	2.1	1.0
BRIU	37 ePg	3	2	8.1					7.5	78		1.9
BERU	38 ePg	3	2	8.0					7.4	75		1.9
	eSg	3	2	13.3								
NSLU	38 ePg	3	2	8.0					7.6	80		2.0
	Pm	3	2	10.3 0.10			0.07	8.1				
	eSg	3	2	13.7								
	Sm	3	2	14.6 0.30	0.55	0.17				1	.9	
		3	2	15.1 0.20	0.55	0.17	0.25			1.	1.9	
	m	_					-				1.9	
			_	я. Закарп		_	_					
				; φ=48°N;								
	MD=2	2.6(15); <i>H</i>	Kp = 9.0(6)	KD = 8.60	(15); [ML=2	2.5(8)	; MS	H=2	2.4(6);		
TRSU	12 +iPg	3	15	10.3	,		, ,			134		2.6
	Pm	3	15	10.6 0.20			2.20	8.6				
	-iSg	3	15	12.8								
	Sm	3	15	13.1 0.20	1.00	7.91				2	.3	
	m	3	15	13.8 0.40			3.87				2.6	
KORU	19 -iPg	3	15	11.4					8.4	117		2.4
	Pm	3	15	11.8 0.30			2.07	9.4				
	-eSg	3	15	14.3								
	Sm	3	15	14.9 0.30	0.80	7.40				2	.5	
	m	3	15	15.1 0.25			8.03				3.1	
BRIU	38 + ePg	3	15	14.3					8.5	122		2.5
	Pm	3	15	16.0 0.20			0.23	9.1				
	eSg	3	15	19.8								
	Sm	3	15	22.4 0.15	0.30	2.04				2	.4	
	m	3	15	23.9 0.40			0.54				2.2	
NSLU	38 +iPg	3	15	14.5					8.6	130		2.5
	Pm	3	15	14.9 0.20			0.19	9.7				
	eSg	3	15	19.9								
	Sm	3	15	20.6 0.30	4.61	0.10				2	.8	
	m	3	15	21.7 0.20			1.62				2.7	
BERU	39 -iPg	3	15	14.4					8.6	133		2.6
	Pm	3	15	14.8 0.30			0.08	8.3				
	eSg	3	15	19.3								
	Sm	3	15	20.0 0.20	0.64	0.04				1	.9	
	m	3	15	23.9 0.30			0.52				2.2	
MUKU	57 +ePg	3	15	17.6					8.5	127		2.5
	Pm	3	15	20.0 0.30			0.04	8.5				
	eSg	3	15	25.3								
	Sm	3	15	25.9 0.20	0.34	0.10				1	.9	
	m	3	15	31.3 0.20			0.13				1.8	
MEZ	67 ePg	3	15	20.3					8.8	142		2.6
	eSg	3	15	27.5								
RAKU	84 ePg	3	15	22.4					8.4	116		2.4
	m	3	15	36.2 0.20			0.50				2.6	
UZH	89 ePg	3	15	23.2					8.9	149		2.7
	eSg	3	15	34.8								

1							П	[родолж	ение	таблиі	цы 3.
STNU	1	2 3	4	5	6 7	8 9					
SHIU 138 ePg 3 155 50.8 MORS 141 ePg 3 15 31.3 8.7 134 2.7 KSV 154 Pn 3 15 30.1 8.8 147 2.7 KSV 154 Pn 3 15 30.0 60.0 60 0.05 2.0 KMPU 261 ePn 3 15 48.4 8.9 149 2.7 HORU 283 eSn 3 16 23.3 NDNU 327 ePn 3 15 56.1 8.2 125 2.3 SORM 395 ePn 3 16 3.6 *** **E\$ **** **E\$ **** **** **** ***	STNU	134 ePg	3					8.8	141		
SHIU 138 ePg 3 15 31.3 8.7 134 2.6 MORS 141 ePg 3 15 32.1 8.8 147 2.7 KSV 154 Pn 3 15 32.1 8.9 148 2.7 KMPU 261 ePn 3 15 60.0 0.60 0.05 2.0 KMPU 261 ePn 3 15 60.0 0.60 0.05 2.0 KMPU 261 ePn 3 15 60.0 0.60 0.05 2.0 NBC 61 ePn 3 15 60.0 0.60 0.05 2.0 KMPU 261 ePn 3 16 23.3 8.9 149 2.7 NBC 61 ePn 3 15 56.1 8.2 125 2.3 SORM 395 ePn 3 16 3.6 3.6 3.8 13.8 3.6 4.8 11.8 6.3 43 1.3 1.3 8.5 11.8 6.3 43 1.3 1.3 1.4 6.6 6.3 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_									
MORS 141 ePg 3 15 32.1 8.8 147 2.7 KSV 154 Pn 3 15 34.4 8.9 148 2.7 KMPU 261 ePn 3 15 48.4 8.9 149 2.7 MORU 283 eSn 3 16 23.3 NDNU 327 ePn 3 15 56.1 8.2 125 2.3 SORM 395 ePn 3 16 3.6 NEW 12 - iPg 5 47 10.9 6.3 43 1.3 ESg 5 47 16.3 6.3 47 1.4 ESg 5 47 17.1 0.10 0.14 1.2 KORU 18 - ePg 5 47 17.1 0.10 0.14 1.2 KORU 18 - ePg 5 47 18.5 0.20 0.26 1.6 BRIU 37 ePg 5 47 23.4 m 5 47 24.6 0.20 0.09 1.5 TRSU 12 + ePg 19 42 3.0 ESg 19 42 3.0 ESg 19 42 3.0 ESg 19 42 3.0 ESg 19 42 4.0 m 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 4.0 m 19 42 1.4 m 19 42 1.4 m 19 42 1.4 m 19 42 1.4 MED = 1.2(3); Kp = 5.5(1); KD = 6.2(3); ML = 0.7(1); MSH = 0.8(1); SHIU 12 ePg 23 28 40.4 0.40 0.00 5.5 ESG 23 28 41.9 ESG 23 28 40.4 0.40 0.00 5.5 ESG 23 28 41.9 ESG 23 28 40.4 0.40 0.00 5.5 ESG 23 28 41.9 ESG 23 28 40.4 0.00 0.06 0.7 EST ESU 12 ePg 23 28 40.4 0.00 0.06 0.7	SHIU							8.7	134		2.6
KSV		_									
Martin		_									
KMPU 261 ePn 3 15 48.4 8.9 149 2.7 HORU 283 eSn 3 16 23.3 NDNU 327 ePn 3 15 56.1 8.2 125 2.3 SORM 395 ePn 3 16 3.6)	0.05			2.0	
HORU 283 eSn 3 16 23.3 NDNU 327 ePn 3 15 56.1 8.2 125 2.3 NDNU 327 ePn 3 16 3.6	KMPU							8.9	149		2.7
NDNU 327 ePn 3 15 56.1 8.2 125 2.3 SORM 395 ePn 3 16 3.6 № 68. 15 ноября. Закарпатье, р-н с.Тросник. 0=5ч 47мин 10.9c; φ=48.01°N; λ=23.04°E; h=11.8 км; MD=1.4(3); KD=6.4(3); ML=1.4(3); TRSU 12-iPg 5 47 13.9 6.3 43 1.3 eSg 5 47 16.3 m 5 47 17.1 0.10 0.14 1.2 KORU 18-ePg 5 47 15.0 6.4 47 1.4 eSg 5 47 17.8 m 5 47 18.5 0.20 0.26 1.6 BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 NSLU 38 eSg 5 47 23.1 NSLU 38 eSg 5 47 23.4 m 5 47 24.6 0.20 0.09 1.5 № 69. 15 ноября. Закарпатье, р-н с.Тросник. 0=19ч 41мин 57.5c; φ=48°N; λ=23.03°E; h=12 км; MD=0.9(2); KD=5.7(2); ML=1.0(3); TRSU 12+ePg 19 42 0.5 eSg 19 42 1.7 eSg 19 42 3.0 m 19 42 4.0 0.15 0.05 0.8 KORU 19+ePg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 1.9 0.15 0.04 1.1 N© 70. 21 ноября. Львовская обл., р-н г.Схидница. 0=23ч 28мин 37.8c; φ=49.33°N; λ=23.32°E; h=2 км; MD=1.2(3); Kp=5.5(1); KD=6.2(3); ML=0.7(1); MSH=0.8(1); SHIU 12 ePg 23 28 40.1 5.5 5.5 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 40.9 eSg 23 28 40.9 eSg 23 28 40.9 eSg 23 28 40.9 eSg 23 28 49.8 1.40 0.08 0.21 0.8 eSg 23 28 49.8 1.40 0.08 0.21											
SORM 395 ePn 3 16 3.6 No. 68. 15 Hosfops. 3akapnate, p-H c.Tpochuk. 0=54 47muh 10.9c; φ=48.01°N; λ=23.04°E; h=11.8 κm; MD=1.4(3); KD=6.4(3); ML=1.4(3); TRSU 12-iPg 5 47 13.9 6.3 43 1.3 eSg 5 47 16.3 6.3 43 1.3 KORU 18-ePg 5 47 17.1 0.10 0.14 1.2 KORU 18-ePg 5 47 17.5 0.0 6.4 47 1.4 eSg 5 47 18.5 0.20 0.26 1.6 1.6 BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 1.5								8.2	125		2.3
№ 68. 15 ноября. Закарпатье, р-н с.Тросник. 0=54 47мин 10.9c; φ =48.01°N; λ =23.04°E; h =11.8 км; MD=1.4(3); KD=6.4(3); ML=1.4(3); TRSU 12 -iPg 5 47 13.9 6.3 43 1.3 ESG 5 47 16.3 1.2 1.4 1.2 KORU 18 -ePg 5 47 15.0 0.14 1.2 1.4 eSg 5 47 17.8 1.4 eSg 5 47 17.8 1.4 eSg 5 47 18.0 0.26 1.6 1.6 1.5 eSg 5 47 18.0 0.26 1.6 1.5 eSg 5 47 18.0 0.26 6.6 51 1.5 eSg 5 47 23.1 NSLU 38 eSg 5 47 23.1 NSLU 38 eSg 5 47 23.4 PH 2.2 2.0 0.09 1.5 NSLU 36 1.5 NSLU 1.5								0.2	120		2.0
	5014.1	0,00 0111				ПЭТЬС n _	u e Tnoc	пик			
ТRSU 12 -iPg 5 47 13.9 6.3 43 1.3 eSg 5 47 16.3 1.4 (3); $ML=1.4(3)$; $ML=1.4(3)$		(
TRSU 12 -iPg 5 47 13.9 6.3 43 1.3 eSg 5 47 16.3		C			,			11.0 KM	•		
KORU 18 -ePg 5 47 17.1 0.10 0.14 1.2 KORU 18 -ePg 5 47 15.0 6.4 47 1.4 eSg 5 47 17.8 6.6 47 1.6 BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 6.6 51 1.5 NSLU 38 eSg 5 47 23.4			Ι	MD = 1.4(3)	,	4(3); ML =	=1.4(3);				
КОRU 18 -ePg 5 47 17.1 0.10 0.14 1.2 kORU 18 -ePg 5 47 15.0 6.4 47 1.4 eSg 5 47 17.8 17.8 m 5 47 18.5 0.20 0.26 1.6 lost 1.6 lost 1.5 eSg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 lost 1.5 lost 1.	TRSU	12 -iPg		47				6.3	43		1.3
KORU 18 -ePg 5 47 15.0 6.4 47 1.4 eSg 5 47 17.8 17.8 1.6 1.6 BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 1.5 <td< td=""><td></td><td>eSg</td><td>5</td><td>47</td><td>16.3</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		eSg	5	47	16.3						
KORU 18 -ePg 5 47 15.0 6.4 47 1.4 eSg 5 47 17.8 17.8 1.6 1.6 BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 1.5 <td< td=""><td></td><td>m</td><td>5</td><td>47</td><td>17.1 0.10</td><td>)</td><td>0.14</td><td></td><td></td><td>1.2</td><td></td></td<>		m	5	47	17.1 0.10)	0.14			1.2	
BRIU 37 ePg 5 47 17.8 m 5 47 18.5 0.20 0.26 1.6 BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 NSLU 38 eSg 5 47 23.4 m 5 47 24.6 0.20 0.09 1.5 **Note of the state of	KORU	18 -ePg		47				6.4	47		1.4
BRIU 37 ePg 5 47 18.5 0.20 0.26 1.6 BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 NSLU 38 eSg 5 47 23.4 m 5 47 24.6 0.20 0.09 1.5 **Ne* 69. 15 hoября. Закарпатье, р-н с.Тросник. □=19ч 41мин 57.5c; φ=48°N; λ=23.03°E; h=12 κм; **MD=0.9(2); KD=5.7(2); ML=1.0(3); TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 eSg 19 42 3.0 m 19 42 4.0 0.15 0.05 5.5 30 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 4.6 m 19 42 5.3 0.15 0.08 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 **NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 **NE* 70. 21 hoября. Львовская обл., р-н г.Схидница. □=23ч 28мин 37.8c; φ=49.33°N; λ=23.32°E; h=2 κм; **MD=1.2(3); Kp=5.5(1); KD=6.2(3); ML=0.7(1); MSH=0.8(1); SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 40.9 0.00 5.5 eSg 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 49.8 1.40 0.08 0.21 0.8		_									
BRIU 37 ePg 5 47 18.0 6.6 51 1.5 eSg 5 47 23.1 NSLU 38 eSg 5 47 23.4 m 5 47 24.6 0.20 0.09 1.5 ■ No 69. 15 horofopa. 3akapnate, p-H c.Tpochuk. □ 194 41 μιμ 57.5c; φ=48°N; λ=23.03°E; h=12 κμ; ■ MD=0.9(2); KD=5.7(2); ML=1.0(3); TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 eSg 19 42 3.0 ■ 19 42 4.0 0.15 0.05 5.5 30 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 eSg 19 42 4.6 ■ m 19 42 5.3 0.15 0.08 1.1 NSLU 38 eSg 19 42 10.4 ■ m 19 42 11.9 0.15 0.04 1.1 NSLU 38 eSg 19 42 10.4 ■ 19 42 11.9 0.15 0.04 1.1 ■ No 70. 21 horofopa. Львовская обл., p-H г.Схидница. □ = 234 28 μιμ 37.8c; φ=49.33°N; λ=23.32°E; h=2 κμ; ■ MD=1.2(3); Kp=5.5(1); KD=6.2(3); ML=0.7(1); MSH=0.8(1); SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 41.9 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.06		_)	0.26			1.6	
NSLU $= \frac{\text{eSg}}{38} = \frac{5}{47} = \frac{47}{23.1}$ NSLU $= \frac{\text{NSLU}}{38} = \frac{8}{98} = \frac{5}{47} = \frac{47}{23.4}$ m $= \frac{5}{47} = \frac{47}{24.6} = \frac{0.20}{0.09} = \frac{0.09}{1.5}$ NSLU $= \frac{\text{NSLO}}{1.5} = \frac{1.5}{1.5} = \frac{\text{NSLO}}{1.5} = \frac{1.5}{1.5} = \frac{\text{NSLO}}{1.5} = \frac{1.5}{1.5} = \frac{\text{NSLO}}{1.5} = \frac{1.5}{1.5} = \frac{1.5}{1.5} = \frac{\text{NSLO}}{1.5} = \frac{1.5}{1.5} =$	DDIII					,	0.20	6.6	<i>5</i> 1	1.0	1.5
NSLU 38 eSg 5 47 23.4 m 5 47 24.6 0.20 0.09 1.5 Ne 69. 15 hosóps. 3akapnate, p-h c.Tpochuk. 0=194 41muh 57.5c; φ =48°N; λ =23.03°E; h =12 km; MD =0.9(2); KD =5.7(2); ML =1.0(3); TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 eSg 19 42 3.0 m 19 42 4.0 0.15 0.05 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 eSg 19 42 4.6 m 19 42 5.3 0.15 0.08 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 5.3 0.15 0.04 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 NOSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 NOSLU 10 12 ePg 23 28 MUH 37.8c; φ =49.33°N; λ =23.32°E; λ =2 km; MD =1.2(3); λ =5.5(1); λ =6.2(3); λ =0.7(1); λ =6.8(1); SHIU 12 ePg 23 28 40.4 0.40 0.00 5.5 eSg 23 28 40.8 1.40 0.08 0.21 0.8 m 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.06	BRIU	_						0.0	31		1.3
m 5 47 24.6 0.20 0.09 1.5 N₂ 69. 15 ноября. Закарпатье, р-н с.Тросник. 0=19ч 41мин 57.5c; φ=48°N; λ=23.03°E; h=12 κм; MD=0.9(2); KD=5.7(2); ML=1.0(3); TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 EORU 19 +ePg 19 42 4.0 0.15 0.05 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 10.4 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 10.4 MD 70. 21 ноября. Львовская обл., р-н г. Схидница. 0=23 ч 28мин 37.8c; φ=49.33°N; λ=23.32°E; h=2 κм; MD=1.2(3); Kp=5.5(1); KD=6.2(3); ML=0.7(1); MSH=0.8(1); SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 6.8 0.8 M											
№ 69. 15 ноября. Закарпатье, р-н с.Тросник. 0=19ч 41мин 57.5c; $\varphi=48^\circ N$; $\lambda=23.03^\circ E$; $h=12$ км; MD=0.9(2); KD=5.7(2); ML=1.0(3); TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 ESg 19 42 3.0 0.05 0.8 0.8 KORU 19 +ePg 19 42 4.0 0.15 0.05 0.8 0.8 KORU 19 +ePg 19 42 4.0 0.15 0.05 0.8 0.8 MOD 19 +ePg 19 42 4.6 0.08 1.1 NSLU 38 eSg 19 42 10.4 0.08 1.1 NSLU 38 eSg 19 42 10.4 0.04 1.1 NP 0.21 ноября. Львовская обл., р-н г.Схидница. 0=23ч 28мин 37.8c; $\varphi=49.33^\circ N$; $\lambda=23.32^\circ E$; $h=2$ км; MD=1.2(3); $Kp=5.5(1)$; $KD=6.2(3)$; $ML=0.7(1)$; $MSH=0.8(1)$; SHIU 12 ePg 23 28 40.1 5.6 32 0.9	NSLU	38 eSg	5		23.4						
$0=19$ ч 41 мин $57.5c$; $\varphi=48^\circ N$; $\lambda=23.03^\circ E$; $h=12$ км; $MD=0.9(2)$; $KD=5.7(2)$; $ML=1.0(3)$; TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 eSg 19 42 3.0 m 19 42 4.0 0.15 0.05 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 eSg 19 42 4.6 m 19 42 4.6 m 19 42 5.3 0.15 0.08 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 N		m	5	47	24.6 0.20)	0.09			1.5	
$0=19$ ч 41 мин $57.5c$; $\varphi=48^\circ N$; $\lambda=23.03^\circ E$; $h=12$ км; $MD=0.9(2)$; $KD=5.7(2)$; $ML=1.0(3)$; TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 eSg 19 42 3.0 m 19 42 4.0 0.15 0.05 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 eSg 19 42 4.6 m 19 42 4.6 m 19 42 1.7 5.9 36 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 N			№ 69.	15 ноябр	я. Закар	патье, р-	н с.Трос	ник.			
TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 eSg 19 42 3.0				_	_		_				
TRSU 12 +ePg 19 42 0.5 5.5 30 0.8 eSg 19 42 3.0 m 19 42 4.0 0.15 0.05 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 eSg 19 42 4.6 m 19 42 5.3 0.15 0.08 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 NSLU 19 -23 42 8μμμ 37.8c; φ=49.33°N; λ=23.32°E; h=2 κμ; MD=1.2(3); Kp=5.5(1); KD=6.2(3); ML=0.7(1); MSH=0.8(1); SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 41.9 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7					,			12 1011,			
KORU 19 +ePg 19 42 4.0 0.15 0.05 0.8 KORU 19 +ePg 19 42 1.7 5.9 36 1.1 eSg 19 42 4.6 0.08 1.1 NSLU 38 eSg 19 42 10.4 0.08 1.1 N№ 70. 21 ноября. Львовская обл., р-н г.Схидница. 0-23ч 28мин 37.8c; φ =49.33°N; λ =23.32°E; h =2 κ M; MD=1.2(3); Kp =5.5(1); KD =6.2(3); ML =0.7(1); MSH =0.8(1); SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 49.8 1.40 0.08 0.21 0.8 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7	TRSII	12 +ePσ		,	-	, (2), 1112	1.0(5),	5.5	30		0.8
KORU $\stackrel{\text{m}}{19}$ 42 4.0 0.15 0.05 0.8 KORU $\stackrel{\text{m}}{19}$ 42 1.7 5.9 36 1.1 eSg 19 42 4.6 m 19 42 5.3 0.15 0.08 1.1 NSLU $\stackrel{\text{N}{2}}{38}$ eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 $\stackrel{\text{N}{2}}{10}$ 70. 21 hoября. Львовская обл., p-н г.Схидница. 0=234 28мин 37.8c; φ=49.33°N; λ=23.32°E; h=2 κм; MD=1.2(3); Kp =5.5(1); KD =6.2(3); ML =0.7(1); MSH =0.8(1); SHIU $\stackrel{\text{N}{2}}{12}$ ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 41.9 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7	11150	_						3.3	50		0.0
KORU 19 +ePg 19 42 1.7 5.9 36 1.1 eSg 19 42 4.6 m 19 42 5.3 0.15 0.08 1.1 NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 $№ 70. 21 μοσρρρρορορορορορορορορορορορορορορορορο$							0.05			0.8	
NSLU $\begin{array}{cccccccccccccccccccccccccccccccccccc$	KORII					,	0.03	5.9	36	0.0	1.1
NSLU $M = 19$ 42 5.3 0.15 0.08 1.1 NSLU $M = 19$ 42 10.4 $M = 19$ 42 11.9 0.15 0.04 1.1 $M = 19$ 42 $M = 19$ 43 $M = 19$ 42 $M = 19$ 43 $M = 19$ 45 $M = 19$ 47 $M = 19$ 48 $M = 19$ 49 $M = 19$ 40 $M = 19$ 42 $M = 19$ 43 $M = 19$ 43 $M = 19$ 43 $M = 19$ 49 $M = 19$ 49 $M = 19$ 49 $M = 19$ 40 $M = 19$ 42 $M = 19$ 49 $M = 19$ 40 $M = 19$ 42 $M = 19$ 49 $M = 19$ 40 $M = 19$ 42 $M = 19$ 43 $M = 19$ 42 $M = 19$ 42 $M = 19$ 43 $M = 19$ 43 $M = 19$ 42 $M = 19$ 43 $M = 19$ 49 $M =$	RORO	_						3.7	50		1.1
NSLU 38 eSg 19 42 10.4 m 19 42 11.9 0.15 0.04 1.1 No 70. 21 hosfdfa. Jebobckas odf., p-h r.Cxudhuqa. $0=234\ 28muh\ 37.8c;\ \varphi=49.33^\circ N;\ \lambda=23.32^\circ E;\ h=2\ \kappa m;$ $MD=1.2(3);\ Kp=5.5(1);\ KD=6.2(3);\ ML=0.7(1);\ MSH=0.8(1);$ SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 41.9 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7		-				5	0.08			1.1	
	NSLII					,	0.00			1.1	
№ 70. 21 ноября. Львовская обл., р-н г.Схидница. $0 = 234\ 28 \text{мин } 37.8c; \ \varphi = 49.33^\circ\text{N}; \ \lambda = 23.32^\circ\text{E}; \ h = 2\ \kappa\text{м}; \\ MD = 1.2(3); \ Kp = 5.5(1); \ KD = 6.2(3); \ ML = 0.7(1); \ MSH = 0.8(1); \\ \text{SHIU} \qquad 12\ \text{ePg} \qquad 23 \qquad 28 \qquad 40.1 \qquad \qquad 5.6 32 \qquad 0.9 \\ \text{Pm} \qquad 23 \qquad 28 \qquad 40.4 0.40 \qquad 0.00 5.5 \\ \text{eSg} \qquad 23 \qquad 28 \qquad 41.9 \\ \text{Sm} \qquad 23 \qquad 28 \qquad 49.8 1.40 0.08 0.21 \qquad \qquad 0.8 \\ \text{m} \qquad 23 \qquad 28 \qquad 50.2 0.80 \qquad 0.06 \qquad 0.7$	NSEC						0.04			1.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1.1	
MD=1.2(3); Kp=5.5(1); KD=6.2(3); ML=0.7(1); MSH=0.8(1); SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 41.9 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7				_					1		
SHIU 12 ePg 23 28 40.1 5.6 32 0.9 Pm 23 28 40.4 0.40 0.00 5.5 0.9 eSg 23 28 41.9 0.00 5.5 0.8 0.8 Sm 23 28 49.8 1.40 0.08 0.21 0.8 0.8 m 23 28 50.2 0.80 0.06 0.7											
Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 41.9 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7									<i>3(1);</i>		
Pm 23 28 40.4 0.40 0.00 5.5 eSg 23 28 41.9 Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7	SHIU	12 ePg	23	28	40.1				32		0.9
Sm 23 28 49.8 1.40 0.08 0.21 0.8 m 23 28 50.2 0.80 0.06 0.7		Pm)	0.00	5.5			
m 23 28 50.2 0.80 0.06 0.7		eSg			41.9						
		Sm	23						0.		
MODE 47:D- 22 29 47.2		m	23	28	50.2 0.80)	0.06			0.7	
	MORS	47 iPg	23	28	47.2			6.3	42		1.3
-iSg 23 28 53.8		-iSg			53.8						
LVV 75 eSg 23 29 1.9	LVV			29							
MEZ 92 eSg 23 29 6.9				29	6.9						
MUKU 108 eSg 23 29 13.3		108 eSg		29	13.3						
BRIU 112 eSg 23 29 15.4											
KORU 131 ePg 23 29 3.0 6.6 50 1.4								6.6	50		1.4
140		-)					

				Продолжение таблицы 3.
1	2 3	4	5	6 7 8 9 10 11 12 13 14 15 16 17
	eSg	23	29	21.7
	C	.№ 71.	22 нояб п	ря. Закарпатье, р-н с.Тросник.
				$c; \varphi = 48.01$ °N; $\lambda = 23.05$ °E; $h = 13$ κM;
				•
TD CLI	11		`	(2); $KD=5.8(2)$; $ML=0.7(2)$;
TRSU	11 +iPg	0	26	36.8 5.1 25 0.6
	m	0	26	39.0 0.25 0.04 0.7
KODII	-eSg	0	26	39.2
KORU	17 ePg	0	26	37.5 6.5 48 1.4
NCLLI	eSg	0	26	40.5
NSLU	37 eSg	0	26	46.2
	m	0	26	47.0 0.30 0.02 0.8
				оя. Румыния, район Фокшаны.
	0)=19ч 14 _М	ин 16.3с,	$e; \varphi = 45.86$ °N; $\lambda = 27.16$ °E; $h = 46.8 \text{ км};$
	MD=4.	7(14); Kp	=14.3(8);	; KD=12.5(14); MSH=4.9(7); MPV=4.8(1);
GIUM	92 P	19	14	32.6
	S	19	14	44.0
MILM	173 P	19	14	42.8
	S	19	15	2.1
KIS	179 P	19	14	43.9 13.9 1590 5.5
	Pm	19	14	53.8 1.20 32.50 14.2 4.8
	-iS	19	15	4.7
SORM	268 P	19	14	53.9
CHRU	286 eP	19	14	53.6 12.8 968 4.9
	Pm	19	15	14.0 0.60 8.10 14.4
	eS	19	15	28.6
	Sm	19	15	55.6 0.80 26.10 83.10 5.2
NDNU	304 eP	19	14	58.5 13.0 1086 5.0
	Pm	19	15	25.0 0.40 19.70 14.0
	eS	19	15	32.5
	Sm	19	15	58.2 0.50 11.10 6.60 4.4
KMPU	305 eP	19	14	58.3 12.6 879 4.8
	eS	19	15	33.1
KSV	315 iP	19	15	0.9 13.1 1157 5.1
	Pm	19	15	23.8 0.90 8.40 14.3
	eS	19	15	34.9
	Sm	19	16	4.0 1.20 1.90 50.60 5.0
RAKU	331 eP	19	15	2.9
STNU	375 eP	19	15	8.0
HORU	376 eP	19	15	7.5
NSLU	382 +iP	19	15	8.9
KORU	398 -iP	19	15	10.6
MEZ	403 eP	19	15	12.0 12.9 1033 5.0
	Pm	19	15	45.3 1.50 2.60 14.0
	eS	19	15	55.2
	Sm	19	16	33.5 1.40 12.00 4.60 4.6
TRSU	404 eP	19	15	11.9
BRIU	417 eP	19	15	13.3 13.0 1071 5.0
	Pm	19	15	43.7 1.50 12.50 14.5
	eS	19	15	58.6
	Sm	19	16	59.9 1.70 10.00 20.80 4.8

									Про	долх	жени	іе табл	пицы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13		5 16 17
BERU	432 eP	19	15	15.9									
MORS	439 eP	19	15	16.9									
MUKU	444 -iP	19	15	16.3									
HOLU	467 +iP	19	15	14.1									
SHIU	470 eP	19	15	20.8									
UZH	479 eP	19	15	20.6									
LVV	498 -iP	19	15	23.6						12.9	1052		5.0
	Pm	19	15	58.8	1.40			8.00	14.7				
	eS	19	16	16.6									
	Sm	19	17	4.3	1.30	3.20	20.10					4.9	
SEV	532 +eP	19	15	26.7						11.2	603		4.0
	eS	19	16	19.4									
SIM	552 -eP	19	15	28.1						11.4	650		4.1
	Pm	19	15	30.6	0.33			2.00	14.2				
	eS	19	16	23.0									
	Sm	19	16		0.60	1.90	6.10					5.3	
YAL	569 -iP	19	15	30.5						11.0	490		3.9
	eS	19	16	26.0									
ALU	582 +eP	19	15	32.2						11.6	755		4.2
	eS	19	16	29.1									
SUDU	622 +eP	19	15	37.5						11.6	755		4.2
	eS	19	16	39.3									
FEO	645 +eP	19	15	39.6						11.2	598		4.0
	eS	19	16	46.0									
KERU	726 eP	19	15	50.7				_					
			22 ноября										
		$0 = 204\ 30$	мин 55.8с	; $\varphi=4$	15.86	PN; λ	=27.1	17°E;	h=3	86 км	ı;		
		MD = 3.4	4(3); Kp=9	9.2(2)	; <i>KD</i>	=10.	1(3);	MSH	=1.9	0(1);			
GIUM	91 P	20	31	10.8			() /			(//			
	S	20	31	21.9									
MILM	172 P	20	31	21.2									
	S	20	31	40.4									
KIS	179 P	20	31	24.5									
	Pm	20	31	25.0	0.20			0.02	9.0		160		
	S	20	31	44.9									
	Sm	20	31		0.30	0.29							
SORM	268 P	20	31	32.6									
NDNU	304 ePn	20	31	38.7						10.1	274		3.4
	Pm	20	31		0.30			0.09	9.5				
	eSn	20	32	10.3									
	Sm	20	32		0.20	0.04	0.01					1.9	
KMPU	305 ePn	20	31	38.6							263		3.4
HORU	377 ePn	20	31	47.5							256		3.3
		№ 74. 1	23 ноября	a. Pyr	иыні	ія, р	айон	Фок	шан	ы.			
		$0=24\ 21$	мин 5.7с;	$\varphi=45$	5.88°1	V; λ=	27.19	9°E; 1	n=33	8 км;			
			4(2); $Kp =$,									
GIUM	91 P	2	21	20.5	,,	5.1	\ - /, 1	~.1		(-),			
0.0111	S	2	21	31.4									
MILM	170 P	2	21	31.4									
	S	2	21	51.3									

					Продолжение таблицы 3.
1	2 3	4	5	6 7 8 9	10 11 12 13 14 15 16 17
KIS	177 P	2	21	32.4	
	Pm	2	21	32.4	7.4
	S	2	21	51.7	
	Sm	2	21	51.8 0.20 0.0	
	m	2	21	55.4 0.15 0.07 0.04	
NDNU	302 iP	2	21	46.7	8.3 115 2.4
	Pm	2	21	50.3 0.09	0.01 8.8
	iS	2	22	17.0	1.0
IZA ADI I	Sm	2	22	34.6 0.29 0.00 0.02	
KMPU	304 eP iS	2 2	21 22	46.0	8.4 116 2.4
VCV		2	22	16.3	
KSV	315 eS	2	22	26.0 39.9 2.55 0.03 0.10	2.0
HORU	Sm 375 iS	2	22	32.4	2.0
HORU	Sm	2	22	56.1 0.31 0.04 0.08	3 2.2
	SIII				
				. Румыния, район 45, 969 М. 1 27	
	MD-3			$\varphi = 45.86$ °N; $\lambda = 27$.	H=3.0(10); MPV=2.5(1);
GIUM	93 P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.7(10), 52	41.2	1-3.0(10), $M1 V -2.3(1)$,
GIUM	93 P S	1	52 52	51.5	
MILM	174 P	1	52	50.4	
IVIILLIVI	S S	1	53	10.5	
KIS	180 iP	1	52	53.3	10.3 160 3.5
1110	Pm	1	52	53.4 0.18	0.02 10.0 2.5
	eS	1	53	14.0	
	Sm	1	53	14.8 0.43 1.00 0.70	3.1
CHRU	286 eP	1	53	5.8	9.5 199 3.0
	Pm	1	53	5.9 0.10	0.03 10.5
	iS	1	53	36.5	
	Sm	1	53	49.9 0.35 0.16 0.52	2 3.0
NDNU	304 eP	1	53	8.2	10.1 271 3.4
	iS	1	53	40.9	
KMPU	305 eP	1	53	8.4	9.9 240 3.3
*****	iS	1	53	41.1	100 001
KSV	315 eP	1	53	9.1	10.0 261 3.4
	Pm	1	53	10.6 0.20	0.12 11.0
	eS	1	53	42.8	2.1
DAZII	Sm	1	54 52	20.1 0.25 0.25 0.59	
RAKU	330 eP	1 1	53 53	11.7	9.6 215 3.1 0.33 11.2
	Pm eS	1	53	15.4 3.40 46.9	0.33 11.2
	Sm	1	54	26.1 3.30 0.47 0.23	3.0
STNU	374 eP	1	53	16.7	9.8 237 3.2
51110	iS	1	53	56.2	7.0 231 3.2
HORU	377 eP	1	53	17.3	9.9 242 3.3
-10110	iS	1	53	56.9	3.5 2.2
NSLU	381 eP	1	53	17.9	9.7 220 3.2
	Pm	1	53	26.0 3.70	0.17 11.1
	eS	1	53	58.0	
	Sm	1	54	53.7 2.45 0.33 0.03	
KORU	397 eP	1	53	19.8	9.9 242 3.3

						Продол	іжение т	габлицы 3.
1	2 3	4	5	6 7 8	9 10	11 12	13 14	
	Pm	1	53	41.3 2.10	0.37	7 11.4	•	
	iS	1	54	1.7				
	Sm	1	54		7 0.02		2.7	7
BRIU	416 eP	1	53	21.9		9.9	9 238	3.3
	Pm	1	53	25.1 2.40	0.33	3 11.5		
	eS	1	54	5.7				
	Sm	1	54	20.6 2.45 0.2	6 0.02		2.9)
MORS	438 eP	1	53	25.1		10.	1 267	3.4
	eS	1	54	11.2				
SEV	533 Sm	1	53	5.8 0.25 0.0	0 0.01	40.	3.1	
	еP	1	53	34.1			7 200	3.7
	Pm	1	53	34.1 0.29	0.01	9.5		
	eS	1	54	28.7				
SIM	554 eP	1	53	36.3			9 130	3.3
	Pm	1	53	37.6 0.32	0.02	2 10.2		
	eS	1	54	31.0	2 001			
OI ID.	Sm	1	54	39.5 1.20 0.0	2 0.04		2.8	
SUDU	623 -eP	1	53	45.8	0.01		7 190	3.7
	Pm	1	53	46.2 0.32	0.01	1 10.3		
	iS	1	54	48.9	2 0 01		2	4
	Sm	1	54	49.4 0.44 0.0			3.4	l
				я. Закарпать				
		$0=34\ 513$	мин 21.4с	c; $\varphi = 48.45$ °N;	λ=23.29°E	; h=2 км	;	
		Λ	MD = 0.9(3)	(S); KD=5.7(3),	ML = 0.8(2)	?);		
MEZ	18 eSg	3	51	27.7				
BRIU	23 +iPg	3	51	26.0		5.4	4 28	0.8
	eSg	3	51	29.4				
	m	3	51	29.7 0.15	0.07	7		1.1
NSLU	31 ePg	3	51	27.2		5.9	9 35	1.0
	iSg	3	51	31.8				
	m	3	51	37.8 0.20	0.01			0.5
TRSU	47 ePg	3	51	_ 30.1	_	5.8		1.0
	•	№ 77. 26	ноября.	Львовская об	бл., р-н г.(Схидниц	a.	
		$0=4$ 4 I_{N}	ин 33.5с	$\varphi = 49.34$ °N;	$\lambda = 23.35$ °E;	$h=2 \kappa M$	•	
			MD	=0.8(2); KD=	5.4(2);			
SHIU	13 iPg	4	1	36.2	\ //	5.:	5 30	0.8
	eSg	4	1	38.0				
MORS	46 iPg	4	1	41.7		5.3	3 26	0.7
	iSg	4	1	48.8				
	Č	№ 78.	26 ноябп	я. Закарпать	е, р-н с.Ті	осник.		
	1			c; $\varphi = 48.01$ °N;			м.	
				F(KD=8.3(12))				
TDCII		١		, ,	1VIL-2.4(9		. `´	1 0
TRSU	12 iPg	10 10	49 49	55.7 55.9 0.10	5.24	7.2 1 8.6	2 67	1.8
	Pm	10 10	49 49		5.72			2.8
	m -iSg	10 10	49 49	57.3 0.10 58.1	3.12	-		2.0
	-13g Sm	10	49 49	58.4 0.20 0.5	4 5 73		2.2)
KORU	18 -iPg	10	49	56.6	T 3.13	7.9		2.2
KUKU	Pm	10	49 49	56.9 0.30	1.57) 93	2.2
	eSg	10	49 49	59.4	1.3	7.0		
	CDg	10	77					
				144				

								Прод	кпод	кение	табли:	цы 3.
1	2 3	4	5	6 7	8	9	10		12		14 15 1	
	Sm	10	50	0.0 0.30	0.58	5.71		•			2.4	
	m	10	50	0.1 0.25			5.85				3.0	
BRIU	37 ePg	10	49	59.6					8.0	100		2.2
	Pm	10	50	1.2 0.20			0.24	8.7				
	eSg	10	50	5.4								
	Sm	10	50	6.8 0.10	1.33	0.01				,	2.2	
	m	10	50	9.1 0.50			0.50				2.2	
NSLU	38 +iPg	10	49	59.9					8.1	104		2.3
	Pm	10	50	0.3 0.20			0.22	9.7				
	eSg	10	50	5.1								
	Sm	10	50	5.9 0.40	4.75	0.16				2	2.8	
	m	10	50	6.3 0.20			1.86				2.8	
BERU	39 +ePg	10	49	59.6					8.2	109		2.4
	Pm	10	50	1.3 0.30			0.14	8.2				
	eSg	10	50	4.7								
	Sm	10	50	4.9 0.30	0.46	0.03					1.8	
	m	10	50	9.4 0.40			0.45				2.2	
MUKU	56 ePg	10	50	3.0					8.4	119		2.5
	Pm	10	50	3.5 0.40			0.02	8.3				
	eSg	10	50	10.0								
	Sm	10	50	12.6 0.30	0.30	0.08					1.8	
	m	10	50	12.8 0.35			0.10				1.7	
MEZ	67 ePg	10	50	5.3					8.4	121		2.5
	eSg	10	50	13.2								
	m	10	50	23.6 0.50			0.04				1.4	
RAKU	84 ePg	10	50	7.4					8.6	129		2.5
	Pm	10	50	8.0 0.20			0.24	9.7				
	eSg	10	50	18.4								
	Sm	10	50	20.8 0.20	0.90	0.17				2	2.5	
	m	10	50	21.5 0.20			0.17				2.1	
UZH	89 eSg	10	50	20.4								
STNU	134 ePg	10	50	17.1					8.7	136		2.6
	eSg	10	50	34.2								
SHIU	138 ePg	10	50	16.1					8.7	138		2.6
	eSg	10	50	34.2								
MORS	141 ePg	10	50	17.1					8.7	140		2.6
KSV	154 ePg	10	50	20.8					8.6	131		2.6
	Pm	10	50	23.0 0.40			0.05	9.4				
	eSg	10	50	40.4								
	Sm	10	50	42.4 0.40	0.15	0.37				2	2.5	
	m	10	50	45.0 0.60			0.09				2.2	
HORU	283 eSn	10	51	8.0								
		№ 79	9. 1 декаб	ря. Карпа	ты, ј	райо	н Вра	анча	•			
	0			$e; \varphi = 45.88$						•		
				9.4(3); KL						,		
GIUM	121 P	15	39	11.5	,	1-77		(,,			
	S	15	39	26.1								
KIS	201 S	15	39	42.0								
KMPU	299 iS	15	40	1.6								
KSV	299 eS	15	40	2.6								
	Sm	15	40	8.0 0.59	0.01	0.07				2	2.9	

The color of th										Про	долх	кение та	блицы 3.
NDNU	1	2 3	4	5	6	7	8	9	10				
Pm	NDNU												
ISS									0.01	8.5			
Note						0.11			0.01	0.0			
HORU						0.09	0.01	0.02				2.4	
SEV 563 P 15 40 4.0 4.0 9.9 124 3.3	HORU												
SEV						0.16	0.07	0.17				3.5	
Pm 15	SEV										9.9		3.3
S						0.31			0.01	10.0			
Sim 15													
SUDU						0.44	0.02	0.02				3.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SUDU										9.8		3.2
S									0.01	9.8			
Sm 15 41 21.3 0.47 0.00 0.02 3.2													
No. N							0.00	0.02				3.2	
O=21									Фок	шан	ы.		
MD=4.1(22); Kp=12.1(6); KD=11.4(22); MSH=4.0(7); GIUM 93 P 21 4 20.1 20.1				_	-		_						
SIUM													
KIS Pm 21 4 31.4 11.6 300 4.2 Pm 21 4 34.0 0.26 0.30 12.2 Sn 21 4 52.0 Sm 21 4 52.0 Sm 21 4 55.3 0.55 9.80 14.10 CHRU 282 ePn 21 4 44.0	GILIM	93 P		· .	, ,), ILL	, 11.	.7(22)	, WID	11 7	.0(7)	,	
Pm 21											11.6	300	4.2
Sn 21	KID								0.30	12.2	11.0	300	7.2
Sm									0.50	12.2			
CHRU 282 ePn 21 4 44.0 11.4 501 4.1 Pm 21 5 1.0 0.30 0.54 11.5 eSn 21 5 14.0 29.7 0.50 0.80 0.20 3.2								14 10					
CHRU							9.80						
Pm 21 5 1.0 0.30 0.54 11.5	CHRU						7.00	1 1.10			114	501	4 1
eSn 21 5 14.0 300 0.20 3.2 KMPU 300 ePn 21 4 45.1 11.5 519 4.2 eSn 21 5 16.0 11.5 519 4.2 KSV 311 ePn 21 4 47.9 11.4 511 4.1 RAKU 328 ePn 21 4 50.0 11.5 520 4.2 STNU 371 eP 21 4 55.1 11.5 538 4.2 HORU 372 ePn 21 4 56.2 11.5 531 4.2 NSLU 380 ePn 21 4 56.2 11.5 526 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 KORU 395 ePn 21 4 57.9 0.94 12.1 523	CIIICO								0.54	11.5	11.1	501	
KMPU 300 ePn 21 eSn 21 5 29.7 0.50 0.80 0.20 3.2 11.5 519 4.2 eSn 21 eSn 21 4 45.1 st. 11.5 519 4.2 eSn 21 4.2 eSn 21 4 45.1 st. 11.5 519 4.2 eSn 21 4 47.9 st. 11.4 511 st. 4.1 st. 4.1 st. 4.1 st. 4.1 st. 5.20 st. 4.2 st. 4.2 st. 4.2 st. 4.1 st. 5.20 st. 4.2 st. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>٠.٠.</td> <td>11.0</td> <td></td> <td></td> <td></td>									٠.٠.	11.0			
KMPU 300 ePn eSn 21 eSn 4 45.1 11.5 519 4.2 eSn KSV 311 ePn 21 4 47.9 11.4 511 4.1 eAn RAKU 328 ePn 21 4 50.0 11.5 520 4.2 eAn STNU 371 eP 21 4 55.1 11.5 538 4.2 eAn HORU 372 ePn 21 4 54.1 11.5 531 4.2 eAn NSLU 380 ePn 21 4 56.2 11.5 526 4.2 eAn KORU 395 ePn 21 4 57.8 11.5 523 4.2 eAn KORU 395 ePn 21 5 27.1 0.70 0.94 12.1 eAn 523 4.2 eAn MEZ 400 ePn 21 4 59.2 11.5 517 4.2 eAn TRSU 402 ePn 21 4 57.9 11.6 539 4.2 eAn BRIU 414 ePn 21 5 0.4 11.4 506 4.1 eAn BERU 429 ePn 21 5 0.4 11.5 531 4.2 eAn MORS 435 ePn 21 5 3.7 11.5 520 4.2 eAn MUKU 442 ePn 21 5 3.6 11.5 520 4.2 eAn SEV 532 P 21 5 9.0 11.5 528 4.2 eA							0.80	0.20				3.2	
eSn 21 5 16.0 KSV 311 ePn 21 4 47.9 11.4 511 4.1 RAKU 328 ePn 21 4 50.0 11.5 520 4.2 STNU 371 eP 21 4 55.1 11.5 538 4.2 HORU 372 ePn 21 4 54.1 11.5 538 4.2 NSLU 380 ePn 21 4 56.2 11.5 531 4.2 KORU 395 ePn 21 4 56.2 11.5 526 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 KORU 395 ePn 21 5 27.1 0.70 0.94 12.1 6 23.1 0.60 0.32 0.53 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 5	KMPU										11.5		4.2
KSV 311 ePn 21 4 47.9 11.4 511 4.1 RAKU 328 ePn 21 4 50.0 11.5 520 4.2 STNU 371 eP 21 4 55.1 11.5 538 4.2 HORU 372 ePn 21 4 54.1 11.5 531 4.2 NSLU 380 ePn 21 4 56.2 11.5 526 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 Pm 21 5 27.1 0.70 0.94 12.1 523 4.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SEV 532 P 21 5 3.6 11.5 52													
RAKU 328 ePn 21 4 50.0 11.5 520 4.2 STNU 371 eP 21 4 55.1 11.5 538 4.2 HORU 372 ePn 21 4 54.1 11.5 531 4.2 NSLU 380 ePn 21 4 56.2 11.5 526 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 eSn 21 5 39.1 sm 21 6 23.1 0.60 0.32 0.53 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 3.7 11.5 521 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 520 4.2 SHIU 467 iPn 21 5 8.7 UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.5 528 4.2 SEV 532 P 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	KSV										11.4	511	4.1
STNU 371 eP 21 4 55.1 11.5 538 4.2 HORU 372 ePn 21 4 54.1 11.5 531 4.2 NSLU 380 ePn 21 4 56.2 11.5 526 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 Pm 21 5 27.1 0.70 0.94 12.1 4.2 eSn 21 5 39.1 3.2 3.2 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 59.2 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.6 539 4.2 BERU 429 ePn 21 5 0.4 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 <td></td>													
HORU 372 ePn 21 4 54.1 11.5 531 4.2 NSLU 380 ePn 21 4 56.2 11.5 526 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 Pm 21 5 27.1 0.70 0.94 12.1 9.2 4.2 MEZ 400 ePn 21 4 59.2 0.53 3.2 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 3.7 11.5 531 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 9.0													
NSLU 380 ePn 21 4 56.2 11.5 526 4.2 KORU 395 ePn 21 4 57.8 11.5 523 4.2 Pm 21 5 27.1 0.70 0.94 12.1 eSn 21 5 39.1 Sm 21 6 23.1 0.60 0.32 0.53 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	HORU	372 ePn	21	4							11.5	531	
KORU 395 ePn 21 4 57.8 11.5 523 4.2 Pm 21 5 27.1 0.70 0.94 12.1 12 4.2 ESN 21 5 39.1 39.1 3.2 3.2 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 <				4									
Pm 21 5 27.1 0.70 0.94 12.1 eSn 21 5 39.1 39.1 39.1 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S													
eSn 21 5 39.1 Sm 21 6 23.1 0.60 0.32 0.53 3.2 MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 520 4.2 SHIU 467 iPn 21 5 8.7 UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2			21	5					0.94	12.1			
MEZ 400 ePn 21 4 59.2 11.5 517 4.2 TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 7 7 7 5 4.2 SEV 532 P 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6		eSn	21	5									
TRSU 402 ePn 21 4 57.9 11.6 539 4.2 BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 8.7 7 11.5 528 4.2 SEV 532 P 21 5 14.0 11.5 528 4.2 SEV 532 P 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6<		Sm	21	6	23.1	0.60	0.32	0.53				3.2	
BRIU 414 ePn 21 5 0.4 11.4 506 4.1 BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	MEZ	400 ePn	21	4	59.2						11.5	517	4.2
BERU 429 ePn 21 5 1.3 11.5 531 4.2 MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	TRSU	402 ePn	21	4	57.9						11.6	539	4.2
MORS 435 ePn 21 5 3.7 11.5 520 4.2 MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	BRIU	414 ePn	21	5	0.4						11.4	506	4.1
MUKU 442 ePn 21 5 3.6 11.5 523 4.2 SHIU 467 iPn 21 5 8.7 UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	BERU	429 ePn	21	5	1.3						11.5	531	4.2
SHIU 467 iPn 21 5 8.7 UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	MORS	435 ePn	21	5	3.7						11.5	520	4.2
UZH 477 ePn 21 5 9.0 11.5 528 4.2 SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	MUKU	442 ePn	21	5	3.6						11.5	523	4.2
SEV 532 P 21 5 14.0 11.4 300 4.1 Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	SHIU	467 iPn	21	5	8.7								
Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2	UZH	477 ePn	21		9.0						11.5	528	4.2
Pm 21 5 15.9 0.28 0.10 11.8 S 21 6 6.6 Sm 21 6 9.7 0.40 0.29 0.24 4.2		532 P	21										4.1
Sm 21 6 9.7 0.40 0.29 0.24 4.2		Pm							0.10	11.8			
		S		6	6.6								
SIM 552 P 21 5 15.9 11.4 306 4.1			21		9.7	0.40	0.29	0.24				4.2	
	SIM	552 P	21	5	15.9						11.4	306	4.1

								Про	долх	кение та	блицы 3.
1	2 3	4	5	6 7	8	9	10	11	12		15 16 17
	S	21	6	10.8							
	Sm	21	6	11.4 0.34	0.09	0.21				4.0	
YAL	569 P	21	5	18.5							
	S	21	6	15.6							
ALU	581 P	21	5	21.5					10.8	210	3.8
	Pm	21	5	23.3 0.20)		0.11	12.5			
	S	21	6	21.5							
	Sm	21	6	24.3 0.5	0.59	0.30				4.5	
SUDU	621 P	21	5	24.8					11.4	302	4.1
	Pm	21	5	25.8 0.58	3		0.16	12.6			
	S	21	6	27.9							
	Sm	21	6	30.6 0.40	0.53	0.22				4.4	
FEO	644 P	21	5	29.2					11.4	320	4.1
	S	21	6	35.2							
	Sm	21	6	38.3 0.24						4.2	
				я. Закар							
		0 = 2345	6мин 30с	$\varphi = 48.04$	°N; λ=	= <i>23.0</i> 4	4°E; 1	h=14	<i>1 км;</i>		
			MD = 0.96	l); KD=5.	6(1):	ML=I	1.0(2)	:			
TRSU	8.9 +ePg	23	56	33.0	() /		()		5.6	31	0.9
	eSg	23	56	35.4							
	m	23	56	36.2 0.10)		0.07			().9
KORU	15 eSg	23	56	36.5							
NSLU	35 eSg	23	56	42.2							
	m	23	56	43.5 0.20)		0.03			1	0.1
		№ 82	. 12 дека	бря. Карі	іаты,	райо	н Вр	анч	a.		
	0			$\varphi = 45.78^{\circ}$						и;	
		MD=3.	1(9); Kp=	=9.8(7); K	D=9.6	5(9); 1	MSH=	=3.00	(6);		
GIUM	125 P	8	26	2.1		\ / /		,			
KIS	213 -iP	8	26	11.3					10.1	100	3.4
	Pm	8	26	11.4 0.13	5		0.33	9.8			
	iS	8	26	35.3							
	Sm	8	26	35.5 0.30)	0.35					
	m	8	26	35.5 0.30	0.35	0.22					
CHRU	285 iS	8	26	51.5							
IZCX/		O	20	31.3							
KSV	306 eP	8	26	23.0					9.8	231	3.2
KSV	Pm	8 8	26 26)		0.04	9.6	9.8	231	3.2
KSV	Pm -S	8 8 8	26 26 26	23.0 29.3 1.70 56.1			0.04	9.6	9.8		3.2
	Pm -S Sm	8 8 8	26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.13		0.05	0.04	9.6		3.1	
KMPU	Pm -S Sm 309 iP	8 8 8 8	26 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.15 22.3		0.05	0.04	9.6			3.2
KMPU	Pm -S Sm 309 iP iS	8 8 8 8 8	26 26 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.13 22.3 55.3		0.05	0.04	9.6	9.5	3.1	3.1
	Pm -S Sm 309 iP iS 313 eP	8 8 8 8 8	26 26 26 26 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.1: 22.3 55.3 23.5	0.09				9.5	3.1	
KMPU	Pm -S Sm 309 iP iS 313 eP Pm	8 8 8 8 8 8	26 26 26 26 26 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.12 22.3 55.3 23.5 26.0 2.90	0.09	0.05			9.5	3.1	3.1
KMPU	Pm -S Sm 309 iP iS 313 eP Pm eS	8 8 8 8 8 8	26 26 26 26 26 26 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.1: 22.3 55.3 23.5 26.0 2.90 57.2	5 0.09		0.10	9.8	9.5	3.1 206 178	3.1
KMPU RAKU	Pm -S Sm 309 iP iS 313 eP Pm eS Sm	8 8 8 8 8 8 8	26 26 26 26 26 26 26 26 26 26 27	23.0 29.3 1.70 56.1 58.8 1.15 22.3 55.3 23.5 26.0 2.90 57.2 1.7 2.45	5 0.09		0.10	9.8	9.5 9.2	3.1 206 178 3.0	3.1 2.9
KMPU	Pm -S Sm 309 iP iS 313 eP Pm eS Sm 317 iP	8 8 8 8 8 8 8 8	26 26 26 26 26 26 26 26 26 27 26	23.0 29.3 1.70 56.1 58.8 1.1: 22.3 55.3 23.5 26.0 2.90 57.2 1.7 2.4: 23.0	5 0.09 5 0.03	0.06	0.10	9.8	9.5 9.2	3.1 206 178	3.1
KMPU RAKU	Pm -S Sm 309 iP iS 313 eP Pm eS Sm 317 iP Pm	8 8 8 8 8 8 8 8	26 26 26 26 26 26 26 26 27 26 26 26	23.0 29.3 1.70 56.1 58.8 1.1: 22.3 55.3 23.5 26.0 2.90 57.2 1.7 2.4: 23.0 23.3 0.20	5 0.09 5 0.03	0.06	0.10	9.8	9.5 9.2	3.1 206 178 3.0	3.1 2.9
KMPU RAKU	Pm -S Sm 309 iP iS 313 eP Pm eS Sm 317 iP Pm iS	8 8 8 8 8 8 8 8 8	26 26 26 26 26 26 26 26 27 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.1: 22.3 55.3 23.5 26.0 2.90 57.2 1.7 2.4: 23.0 23.3 0.20 57.8	5 0.09 5 0.03	0.06	0.10	9.8	9.5 9.2	3.1 206 178 3.0 226	3.1 2.9
KMPU RAKU NDNU	Pm -S Sm 309 iP iS 313 eP Pm eS Sm 317 iP Pm iS Sm	8 8 8 8 8 8 8 8 8	26 26 26 26 26 26 26 26 27 26 26 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.1: 22.3 55.3 23.5 26.0 2.90 57.2 1.7 2.4: 23.0 23.3 0.20 57.8 58.6 0.30	5 0.09 5 0.03	0.06	0.10	9.8	9.5 9.2 9.7	3.1 206 178 3.0 226	3.1 2.9 3.2
KMPU RAKU NDNU	Pm -S Sm 309 iP iS 313 eP Pm eS Sm 317 iP Pm iS	8 8 8 8 8 8 8 8 8	26 26 26 26 26 26 26 26 27 26 26 26 26	23.0 29.3 1.70 56.1 58.8 1.1: 22.3 55.3 23.5 26.0 2.90 57.2 1.7 2.4: 23.0 23.3 0.20 57.8	5 0.09 5 0.03	0.06	0.10	9.8	9.5 9.2 9.7	3.1 206 178 3.0 226	3.1 2.9

								Про	долх	кени	е табл	ицы 3.
1	2 3	4	5	6 7	8	9	10	11	12		14 15	
HORU	382 iP	8	26	31.0					9.7	227		3.2
	Pm	8	26	31.1 0.20			0.01	9.6				
	iS	8	27	12.6								
	Sm	8	27	13.2 0.25	0.06	0.01					3.0	
MEZ	386 eS	8	27	13.6								
SEV	567 eP	8	26	52.2					9.9	125		3.3
	Pm	8	26	52.8 0.25			0.01	9.5				
	eS	8	27	49.6								
	Sm	8	27	50.3 0.39	0.00	0.01					3.1	
SUDU	659 eP	8	27	3.2					9.0	110		2.8
	Pm	8	27	4.0 0.27		0.01		10.1				
	eS	8	28	10.0								
	Sm	8	28	11.2 0.56	0.01	0.01					3.1	
		№ 83. 1	4 лекабі	эя. Румын			Фон	ciiiai	ны.			
				c; $\varphi=45.6^{\circ}$								
				=9.4(5); KI						,		
GIUM	87 P	17		-9.4(<i>3)</i> , K1 25 2.3	J-9.J	(/), 1	VISI1	-4.7	(J),			
GIUWI	S	17	25	14.2								
мим	196 P	17	25	18.8								
MILM	190 F S	17	25	40.9								
KIS	203 eP	17	25 25	19.2					9.0	70		2.8
KIS	Pm	17	25	28.2 0.25			1.68	9.3	9.0	70		2.0
	S	17	25	42.6			1.00	9.3				
			25 25			0.46					2.2	
KMPU	Sm	17 17	25 25	45.0 0.45 36.0		0.40			0.5	200	3.2	3.0
KIVIFU	333 eP eS	17	26	15.5					9.5	200		3.0
NDNU	333 eP	17	25	36.0					0.4	190		3.0
NDNU	Pm	17	25	51.3 0.40			0.04	9.0	9.4	190		3.0
	eS	17	26	12.7			0.04	9.0				
	Sm	17	26	30.2 0.50	0.00	0.06					2.4	
HORU	405 eP	17	25	49.7	0.09	0.00			0.7	220	Z. T	3.2
HORU	eS	17	26	28.4					9.1	220		3.2
SEV	530 +eP	17	25	58.6					10.1	138		3.4
DE V	Pm	17	25	59.9 0.27			0.00	8.9	10.1	130		J. T
	eS	17	26	51.6			0.00	0.7				
	Sm	17	26	56.6 0.31		0.01					2.8	
SIM	553 eS	17	27	0.4		0.01					2.0	
ALU	581 eP	17	26	5.5					9.4	90		3.0
71LO	Pm	17	26	5.6 0.35			0.01	9.7	7.1	70		5.0
	eS	17	27	6.8			0.01	7.1				
	Sm	17	27	11.7 0.34		0.01					3.0	
SUDU	623 eP	17	26	10.3		0.01			9.8	110	2.0	3.2
БСВС	Pm	17	26	12.3 0.33			0.00	10.0	7.0	110		3.2
	eS	17	27	12.3			0.00	10.0				
	Sm	17	27	15.4 0.58		0.03					3.2	
	211			ря. Закар	патье		c.Tr	nem	ик			
				φ=48.03°N		_	_					
	140											
TDCII		0=1.6(5); K			$\mathcal{I}_{\mathcal{I}}$, \mathcal{M}	L=I.	/(3);	MSI		` .′ -		1.2
TRSU	8.6 +iPg	16	0	4.8					6.4	46		1.3
	-eSg	16	0	7.3								

									Про	долж	кение	е табли	щы 3.
1	2 3	4	5	6	7	8	9	10	11	12	13	14 15	16 17
·	m	16	0	8.3	0.15			0.30				1.6	
KORU	16 +ePg	16	0	6.0						7.2	67		1.8
	Pm	16	0	6.1	0.20			0.09	6.7				
	eSg	16	0	8.8									
	Sm	16	0			0.06	0.38					1.2	
	m	16	0		0.18			0.37				1.8	
BRIU	34 ePg	16	0	9.0						7.3	70		1.8
	eSg	16	0	13.4									
BERU	36 ePg	16	0	8.3						6.8	54		1.5
	eSg	16	0	14.4									
NSLU	37 ePg	16	0	9.2						6.6	51		1.5
	Pm	16	0		0.10			0.02	7.5				
	eSg	16	0	14.4									
	Sm	16	0		0.35	0.26	0.02					1.5	
	m	16	0		0.18			0.15				1.7	
		№ 85	. 24 декаб	ря. Ь	Сарп	аты,	райо	н Вр	анча	a.			
	0=	=6ч 18мі	ин 41.8c; ф	=45.	73°N	$\gamma; \lambda = 2$	26.63	${}^{\circ}E$; $h=$	=138	8.6 кл	и;		
		1	MD=3.1(5)); Kp	=9.4	(1); I	D=9).7(5),	;				
KIS	219 P	6	19	16.5		,		, ,		9.6	68		3.1
	Pm	6	19	16.7	0.31			0.14	9.4				
	S	6	19	41.3									
	Sm	6	19	41.4	0.18		0.16						
	m	6	19	42.0	0.13	0.16	0.07						
KSV	311 eP	6	19	26.7						9.7	221		3.2
KMPU	315 eP	6	19	26.1						9.6	215		3.1
NDNU	323 eP	6	19	27.1						9.7	223		3.2
HORU	387 eP	6	19	35.3						9.7	216		3.1

Список литературы

- 1. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 2. Вербицкий С.Т Сейсмичность Карпат в 2013 году / С.Т. Вербицкий, Р.С. Пронишин, Ю.Т. Вербицкий и др. // Сейсмологический бюллетень Украины за 2013 год. Севастополь, НПЦ "Экоси-Гидрофизика", 2014. С.22—29.
- 3. Раутиан Т.Г. Об определении энергии землетрясений на расстоянии до 3000 км / Т.Г. Раутиан // Экспериментальная сейсмика. (Труды ИФЗ АН СССР; №32(199)). М.: АН СССР, 1964. С. 88–93.
- 4. Раутиан Т.Г. Энергия землетрясений / Т.Г. Раутиан // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; №9(176)). М.: АН СССР, 1960. С. 75–114.
- 5. Маламуд А.С. Использование длительности колебаний для энергетической классификации землетрясений / А.С. Маламуд // Магнитуда и энергетическая классификация землетрясений. Т. II. М.: АН СССР, 1974. С. 180 –194.
- 6. Herrmann R.B. 1979. "FASTHYPO a hypocenter location program" / R.B. Herrmann // Earthquake notes. vol. 50. № 2. P. 25–37.
- 7. Кутас В.В. Использование макросейсмических данных при расчете закарпатского годографа *P* и *S*-волн / В.В. Кутас, Р.С. Пронишин, И.М. Руденская // Сейсмологический бюллетень Украины за 2002 год. Симферополь: Севастополь, НПЦ "Экоси-Гидрофизика", 2004 С. 119–126.
- 8. Jeffreys H. Seismological Tables / H. Jeffreys, R. Bullen. London, 1940. 84 p.
- 9. Кутас В.В. Карпатский годограф P и S-волн и неоднородности литосферы / В.В. Кутас, И.М. Руденская, И.А. Калитова // Геофизический журнал, 1999. Т. 21, №3. С. 45–54.

Вербицкий С. Т., Пронишин Р. С., Прокопишин В. И., Стецкив А. Т., Чуба М. В., Нищименко И. М., Келеман И. Н.

- Чуба М. В. Каталог и подробные данные о землетрясениях Карпатского региона за 2013 год / М. В. Чуба, И. Н. Келеман, И.А. Гаранджа и др. // Сейсмологический бюллетень Украины за 2013 год. Севастополь, НПЦ "Экоси-Гидрофизика", 2014. С. 92–158.
- 11. Медведев С.В. Шкала сейсмической интенсивности MSK-64 / С.В. Медведев, В. Шпонхойер, В. Карник. М.: МГК АН СССР, 1965. 11 с.
- 12. Вербицкий С.Т. Сейсмичность Карпат в 2005 году / С.Т. Вербицкий, А.Ф. Стасюк, М.В. Чуба и др. // Сейсмологический бюллетень Украины за 2005 год. Севастополь, НПЦ "Экоси-Гидрофизика", 2007. С. 24—33.
- 13. Вербицкий С.Т. Сейсмичность Карпат в 2006 году / С.Т. Вербицкий, А.Ф. Стасюк, М.В. Чуба и др. // Сейсмологический бюллетень Украины за 2006 год. Севастополь, НПЦ "Экоси-Гидрофизика", 2008. С. 31–41.
- 14. Вербицкий С.Т. Сейсмичность Карпат в 2007 году / С.Т. Вербицкий, А.Ф. Стасюк, М.В. Чуба и др. // Сейсмологический бюллетень Украины за 2007 год. Севастополь, НПЦ "Экоси-Гидрофизика", 2009. С. 24–33.

THE SEISMICITY OF THE CARPATHIANS IN 2014

Verbitsky S.T., Pronishin R.S., Procopishin V.I., Stetskiv A.T., Chuba M.V., Nischimenko I.M., Keleman I.N.

S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Lviv E-mail: pronrom@gmail.com

In 2014 in the Carpathian region seismic monitoring was held by the stationary seismic stations "Lviv", "Uzhgorod", "Mezhgorye"", "Kosov", "Morshyn", "Trosnik", "Nyzhnye selyshche", "Gorodok", "Chernivtsi", "Berehove", "Breed", "Mukachevo", "Rakhiv", "Korolevo", "Kamianets-Podilskyi", "Novodnestrovsk", "Skhidnytsya", "Starunya", "Stuzhytsya". In July 2014, 14 km to the South-East from Uzhgorod a new station "Holmets" has been opened.

In the processing and interpretation of digital records, for more reliable selection of fuzzy seismic phases Butterworth band pass filter (0.5 Hz to 15 Hz) was used. When calculating the energy characteristics of the seismic events the signal spectrum of the amplitude-frequency response of the equipment was adjusted and reduction of the signal to units of ground motion was made.

A comprehensive analysis was performed for an area bounded by coordinates: 47°N–21st; 51°N–21st, 51°N–30th; 44°N–30th; 44°N–24°E; 47°N–24°E. The main parameters of the earthquakes were determined using the program NERO.

The program performs the calculation of the coordinates, time of occurrence of an earthquake and assesses the accuracy of the result, as the standard deviation for the coordinates of the epicenter and time in the source. Taking into account the characteristics of the propagation of seismic waves in the Carpathian region, to determine the main parameters of earthquakes of the North-Western area the regional Carpathianhodograph was used, and for the foci of the Vrancea region – Bukovina zones the locus of Jeffreys-Bullen was used.

In 2014, the seismic stations of the Carpathian region of Ukraine registered 81 earthquakes of energy class K_P = 5.1÷14.3. The total released seismic energy in the Carpathian region in 2014 amounted to ΣE =2.11·10 ¹⁴ J, which is above the level of the previous year (ΣE =1.33·10 ¹⁴ J). In the Transcarpathians 27 earthquakes of energy class

 K_P =5.2÷8.9 were observed. Their total seismic energy is ΣE =2.68·10⁹ J. In the Precarpathians four events of energy class K_P =5.5÷7.8 were observed, the total seismic energy of which is ΣE =6.52·10⁸ J). In the Vrancea area in Romania the network of seismic stations of Ukraine has registered 28 earthquakes with K_P =8.1÷14.3, the total seismic energy of which is ΣE =2.11·10¹⁴ J. In Bukovina 21 earthquakes were registered with the total energy ΣE =2.51·10⁹ J. The article describes the features of seismicity of the Carpathian region in 2014.

The catalog of earthquakes, distribution of earthquakes over the regions and energy classes, graphs of the release of seismic energy and the number of earthquakes in the region are presented. Brief characteristics of seismicity in separate seismically active areas of the Carpathian region is given.

Keywords: Earthquake, epicenter, source, seismicity, seismic activity, seismic energy, energy class, the magnitude, the intensity of the earthquake, the seismic station, seismic areas, the Carpathian region, deep fault.

References

- 1. Instrukciya o poryadke proizvodstva i obrabotki nablyudenij na sejsmicheskih stanciyah Edinoj sistemy sejsmicheskih nablyudenij SSSR. M.: Nauka, 1982. 273 s.
- Verbickij S.T Sejsmichnost' Karpat v 2013 godu / S.T. Verbickij, R.S. Pronishin, YU.T. Verbickij i dr. // Sejsmologicheskij byulleten' Ukrainy za 2013 god. – Sevastopol', NPC "EHkosi-Gidrofizika", 2014. – S.22–29.
- 3. Rautian T.G. Ob opredelenii ehnergii zemletryasenij na rasstoyanii do 3000 km / T.G. Rautian // EHksperimental'naya sejsmika. (Trudy IFZ AN SSSR; №32(199)). M.: AN SSSR, 1964. S. 88–93.
- Rautian T.G. EHnergiya zemletryasenij / T.G. Rautian // Metody detal'nogo izucheniya sejsmichnosti. (Trudy IFZ AN SSSR; №9(176)). – M.: AN SSSR, 1960. – S. 75–114.
- Malamud A.S. Ispol'zovanie dlitel'nosti kolebanij dlya ehnergeticheskoj klassifikacii zemletryasenij / A.S. Malamud // Magnituda i ehnergeticheskaya klassifikaciya zemletryasenij. T. II. – M.: AN SSSR, 1974. – S. 180 –194.
- Herrmann R.B. 1979. "FASTHYPO a hypocenter location program" / R.B. Herrmann // Earthquake notes. – vol. 50. – № 2. – P. 25–37.
- Kutas V.V. Ispol'zovanie makrosejsmicheskih dannyh pri raschete zakarpatskogo godografa R i S-voln / V.V. Kutas, R.S. Pronishin, I.M. Rudenskaya // Sejsmologicheskij byulleten' Ukrainy za 2002 god. Simferopol': Sevastopol', NPC "EHkosi-Gidrofizika", 2004 S. 119–126.
- 8. Jeffreys H. Seismological Tables / H. Jeffreys, R. Bullen. London, 1940. 84 p.
- Kutas V.V. Karpatskij godograf R i S-voln i neodnorodnosti litosfery / V.V. Kutas, I.M. Rudenskaya, I.A. Kalitova // Geofizicheskij zhurnal, 1999. T. 21, №3. S. 45–54.
- CHuba M. V. Katalog i podrobnye dannye o zemletryaseniyah Karpatskogo regiona za 2013 god / M. V. CHuba, I. N. Keleman, I.A. Garandzha i dr. // Sejsmologicheskij byulleten' Ukrainy za 2013 god. Sevastopol', NPC "EHkosi-Gidrofizika", 2014. S. 92–158.
- 11. Medvedev S.V. SHkala sejsmicheskoj intensivnosti MSK-64 / S.V. Medvedev, V. SHponhojer, V. Karnik. M.: MGK AN SSSR, 1965. 11 s.
- Verbickij S.T. Sejsmichnost' Karpat v 2005 godu / S.T. Verbickij, A.F. Stasyuk, M.V. CHuba i dr. // Sejsmologicheskij byulleten' Ukrainy za 2005 god. Sevastopol', NPC "EHkosi-Gidrofizika", 2007. S. 24–33.
- Verbickij S.T. Sejsmichnost' Karpat v 2006 godu / S.T. Verbickij, A.F. Stasyuk, M.V. CHuba i dr. // Sejsmologicheskij byulleten' Ukrainy za 2006 god. Sevastopol', NPC "EHkosi-Gidrofizika", 2008. S. 31–41.
- Verbickij S.T. Sejsmichnost' Karpat v 2007 godu / S.T. Verbickij, A.F. Stasyuk, M.V. CHuba i dr. // Sejsmologicheskij byulleten' Ukrainy za 2007 god. Sevastopol', NPC "EHkosi-Gidrofizika", 2009. S. 24–33.

УДК 550.348.096.64

ОСОБЕННОСТИ СЕЙСМИЧЕСКОГО ПРОЦЕССА В КАРПАТСКОМ РЕГИОНЕ В 2014 ГОДУ

Степаненко Н. Я., Карданец В. Ю., Симонова Н. А.

Институт геологии и сейсмологии АН Молдовы, Кишинёв E-mail: seismolab@rambler.ru

Сейсмичность Карпатского региона в 2014 году рассматривается на основе наблюдений сети сейсмических станций Молдовы и данных НИФЗ в Бухаресте [1]. Представлено распределение по месяцам года числа подкоровых землетрясений, максимальных магнитуд и глубин очагов области Вранча. Представлен список ощущавшихся в 2014 году землетрясений на территории Молдовы с описанием их проявления на земной поверхности. Построены карты изосейст землетрясений 29 марта, 10 сентября и 22 ноября 2014 г. Приводятся решения механизмов очагов этих землетрясений по данным различных агентств.

Ключевые слова: зона Вранча, интенсивность, изосейсты, механизм очага, афтершоки, напряжения, нодальная плоскость.

ВВЕДЕНИЕ

Наибольшую сейсмическую опасность для территории Молдовы представляют сильные землетрясения глубокофокусной зоны Вранча, относящиеся к Карпатскому сейсмоактивному региону. В данной статье сейсмичность зоны Вранча рассмотрена на основе наблюдений сети сейсмических станций Молдовы и данных Национального института Физики Земли в Бухаресте [1]. Особое внимание уделено описанию макросейсмического проявления на территории республики Молдовы трех наиболее сильных землетрясений 2014 года: 29 марта, 10 сентября и 22 ноября. Для этих событий также приведены решения механизмов очагов и дан их анализ.

1. АНАЛИЗ СЕЙСМИЧЕСКИХ ДАННЫХ

Сейсмическая опасность территории Молдовы в значительной степени определяется влиянием промежуточных землетрясений области Вранча и коровыми землетрясениями, происходящими в юго-восточной части Румынии.

На рисунках 1, 2 показаны гистограммы распределения по месяцам и магнитудам M_L числа землетрясений области Вранча с глубиной залегания очагов в интервале $H=80{\text -}160~\kappa M$ согласно каталогу землетрясений Института физики Земли в Бухаресте ROMPLUS [1].

Землетрясения произошли в диапазоне глубин 85–145 $\kappa м$. Произошла разрядка напряженности практически на всех этажах глубин фокальной зоны Вранча. Максимальными событиями с промежуточной глубиной очага были землетрясения 29 марта и 10 сентября 2014 г.

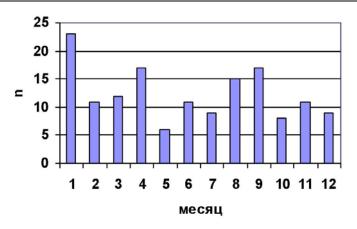


Рис. 1. Распределение по месяцам 2014 года числа землетрясений области Вранча с $M \ge 3.0$ по данным каталога [1].

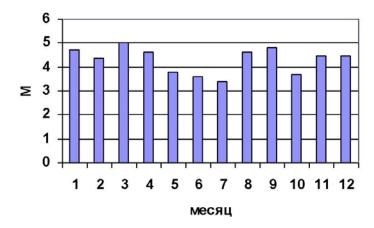


Рис. 2. Распределение по месяцам 2014 года максимальных магнитуд землетрясений области Вранча по данным каталога [1].

Наиболее значительным коровым событием за инструментальный период наблюдений было землетрясение 22 ноября 2014 г. с магнитудой ML=5.7 и глубиной очага 40 км. Сеть сейсмических станций Румынии отметила 75 афтершоков в течение 72 часов с наибольшей магнитудой M=3.1 в интервале глубин 16—47 км. Землетрясения в данной зоне продолжались вплоть до 19 января 2015 г. Наибольшим был афтершок 7 декабря с ML=4.5. Очаги связаны с активизацией разлома Печеняга-Камена.

В таблице 1 отмечены сейсмические события Карпатского региона, которые проявились на территории Молдовы.

Таблица 1. Список ощущавшихся в 2014 году землетрясений на территории Молдовы (MOLD)

N₂	Пото	Время	Широта	Долгота	Глубина	Магнитуда	Магнитуда
145	Дата	h m s	φ°, N	λ°, E	h, км	MSM	ML
1	12 01	18 26 02.3	45.50	26.39	137	4.3	4.4
2	23 01	06 15 04.8	45.52	26.28	130	4.7	4.7
3	03 02	00 26 31.7	45.50	26.47	147	4.3	4.3
4	24 02	00 22 53.0	45,72	26,68	106	4.0	4.4
5	26 03	19 46 30.8	45.64	26.56	133	4.2	4.6
6	29 03	19 18 05.3	45.62	26.53	130	4.8	4.3
7	03 04	12 38 57.4	45.47	26.40	124	4.6	4.6
8	24 08	07 12 49.0	45,61	26.32	147	4.1	4.6
9	10 09	19 45 57.8	45.66	26.42	100	5.1	4.8
10	03 11	13 19 59,0	45,57	26,40	118	3,8	4.5
11	22 11	19 14 15.6	45.98	27.12	40	5.6	5.7
12	07 12	21 04 05.0	45.90	27.17	38	4.2	4.5
13	12 12	08 25 38.0	45.74	26.78	120	3.7 pv	4.0

2. МАКРОСЕЙСМИЧЕСКИЕ СВИДЕТЕЛЬСТВА

Рассмотрим особенности проявления на земной поверхности событий, указанных в таблице 1.

12 января. Кишинев (2 балла) Землетрясение ощущали отдельные люди на верхних этажах зданий. Почувствовали два толчка, один сильный, второй слабее. (7 этаж 9-ти этажного дома).

23 января. Кагул (3–4 балла). Опрошено 52 человека, землетрясение почувствовали – 14, некоторые люди испугались, отдельные люди проснулись. На верхних этажах наблюдалось сотрясение мебели, слышался звон стекол в серванте.

Леово (3–4 *балла*) Со ссылкой на интервью жителей Леова, землетрясение произошло 23.01.2014 г. в 8 v 15 m по местному времени.

В общей сложности было опрошено шесть жителей города, разных возрастов, которые живут в разных частях города в различных типах жилья.

Первый резидент (живет в многоквартирном доме, 3-й этаж, в центре города). "Я готовился кормить ребенка. В какой-то момент, я почувствовал легкое сотрясение и интуитивно понял, что это возможно землетрясение. Я невольно посмотрел на часы, было 8 ν 14 ν и побежал к моему ребенку, который оставался спокойным. Вечером по ТВ я слышал, что произошло землетрясение".

Второй житель (живет в одноэтажном доме, центр): "Я пошел дать пищу птицам и навести порядок в сарае. Куры мне показались беспокойными, и я почувствовал слабое сотрясение, которое продолжалось очень короткое время. Я не знаю, точное время, но я предполагаю, что это было где-то в 8 и 15 м. Я понял, что это может быть небольшое землетрясение".

ОСОБЕННОСТИ СЕЙСМИЧЕСКОГО ПРОЦЕССА В КАРПАТСКОМ РЕГИОНЕ В $2014~\Gamma\mathrm{OДY}$

Третий житель: "В момент землетрясения я шел на рынок, и мне казалось, что все собаки лаяли на улице в унисон. Я не наблюдал сотрясения или других явлений. О вероятности землетрясения услышал на рынке".

Четвертый житель (живет в зоне Роза, в одноэтажном доме): "В то время я готовился сесть в машину, и поехать на работу. Я почувствовал, что автомобиль немного трясется. Это было 8 ч 15 м. Я не придал большого значения этому событию. Я услышал о землетрясении по телевидению и вспомнил, как утром дрожала машина".

Пятый житель (проживает в 2-х этажном доме): "Когда было землетрясение, я был на верхнем этаже дома и смотрел утренние новости. В какой-то момент, я услышал лай собаки и, когда я выглянул в окно, почувствовал легкое сотрясение. Я посмотрел и увидел, что люстра немного качается. Я испугался и направился к выходу. Это было где-то между 8:10 и 8:15".

Шестой житель (находился в больнице, в центре города, на 4-м этаже): "В то время я почувствовал странную тишину и покачивание кровати. Мне показалось, что оно довольно большое. Потом я услышал какой-то шум в коридоре и понял, что это землетрясение. Я не запаниковал".

Кишинев (3 *балла*) Ощущалось на всех этажах зданий. Наблюдалось лёгкое сотрясение (1 этаж), чувствовались толчки (2–3 этажи), раскачивалась люстра, слышались дребезжание двери и звон посуды (2 этаж).

3 февраля. Кагул (2 балла) Опрошено 43 человека, двое из них проснулись.

24 февраля. Кагул (2 балла) Опрошено 56 человек, ощутили двое. Один из них проснулся от резкого толчка, второй почувствовал слабое сотрясение, находясь в состоянии бодрствования.

26 марта. Кагул (2 балла) Опрошено 57 человек, из них 2 человека ощутили слабое сотрясение.

Землетрясение 29 марта 2014 г.

Землетрясению 29 марта с M=4.8 предшествовали два относительно крупных землетрясения 26 марта 19 u 46 m с M=4.6 и 29 марта в 01 u 55 m с M=4.3. Наиболее сильное событие 29 марта ощущалось в Румынии интенсивностью в 4 балла в городах Бузэу, Бакэу, Констанца, Текуч, Бырлад, Васлуй, Фокшаны

В субботу вечером в 21 *ч* 18 *м* местного времени кишиневцы вздрогнули – подземные толчки ощущались во всех районах города. У жильцов верхних этажей качались шкафы и диваны. В одном случае на 1 этаже наблюдалось колебание двери.

В соцсетях сообщалось, что за минуту до землетрясения сильно беспокоились собаки. Кошки мирно спали.

В Кагуле землетрясение ощущалось сильнее, чем в Кишиневе. Опрошено 83 человека, ощутили – 55, из них 46 слышали гул. Люди чувствовали легкий испуг, ощутили сотрясения, слышали скрип полов, дверей.

Рошу. Один быстрый толчок в течение 3–4 *сек* ощутили большинство жителей. Некоторые испугались.

Вулканешты. Немногие ощутили 1-2 толчка. Дрожали окна, двери, слегка качалась люстра.

Балаурешты. Большинство спящих проснулись, но не испугались. До толчка был слышен шум.

Чимишлия, Каушаны, Резина, Чадыр-Лунга, Комрат. Почувствовали люди, находящиеся в состоянии покоя.

В Сороках оно было слабее.

Землетрясение почувствовали немногие люди в Тирасполе. В одной квартире на 3-м этаже ощущалось 4–5 колебаний как в едущем поезде. Сильно ощущалось и на пятом этаже.

- В Рыбнице тряхнуло на третьем этаже. В Днестровске ощущалось на 4 этаже.
- В Измаиле тряслись шкафы и дрожал пол. Люди ощутили 4 толчка небольшой силы. Некоторые жители Южноукраинска почувствовали слабые колебания.
- В таблице 2 представлены результаты обработки макросейсмической информации в населенных пунктах Молдовы и Украины.

Таблица 2. Пункты-баллы землетрясения 29 марта 2014 г. на территории Молдовы и Украины

No	Населённый пункт	с. ш.	В. Д.	No	Населённый пункт	с. ш.	В. Д.
	4 балла			11	Днестровск	29.91	46.62
1	Кагул	28.20	45.90	12	Комрат	28.66	46.32
	3–4 балла			13	Новая Сарата	28.39	46.49
2	Вулканешты	28.40	45.68	14	Резина	28.96	47.74
3	Измаил	28.83	45.35	15	Рыбница	29.02	47.76
4	Леово	28.26	46.48	16	Тирасполь	29.62	46.85
5	Рошу	28.19	45.95		2 балла		
	3 балла			17	Сороки	28.30	48.16
6	Балаурешты	28.14	46.94	18	Южноукраинск	31.17	47.82
7	Каушаны	29.42	46.64		Не ощущалось		
8	Кишинёв	28.84	47.02	19	Дубоссары	29.16	47.27
9	Чадыр-Лунга	28.83	46.06	20	Корнешты	28.00	47.36
10	Чимишлия	28.79	46.52	21	Флорешты	28.30	47.89
	2-3 балла			22	Штефан-Водэ	29.66	46.52

В Институте физики Земли [1] составлена таблица из 40 пунктов-баллов на территории Румынии по шкале Меркалли (Табл. 3).

Таблица 3. Пункты-баллы землетрясения 29 марта 2014 г. на территории Румынии

No	Населённый пункт	с. ш.	В. Д.	№	Населённый пункт	с. ш.	В. Д.
1	2	3	4	5	6	7	8
	4–5 балла				3–4 балла		
1	Фокшаны	27.19	45.70	21	Урзичень	26.64	44.71
	4 балла				3 балла		
2	Бакэу	26.92	46.57	22	Александрия	25.33	43.97
3	Брэила	27.96	45.27	23	Брашов	25.60	45.65
4	Бузэу	26.82	45.15	24	Бухарест	26.10	44.43

ОСОБЕННОСТИ СЕЙСМИЧЕСКОГО ПРОЦЕССА В КАРПАТСКОМ РЕГИОНЕ В 2014 ГОДУ

продолжение гаолицы.	олжение таблицы 3	3.
----------------------	-------------------	----

1	2	3	4	5	6	7	8
5	Бырлад	27.67	46.23	25	Буфтя	25.95	44.57
6	Васлуй	27.73	46.64	26	Волунтарь	26.19	44.49
7	Галац	28.04	45.43	27	Каракал	24.35	44.11
8	Ковасна	26.17	45.84	28	Кэлэрашь	27.33	44.20
9	Морень	25.64	44.98	29	Овидиу	28.56	44.27
10	Мэрэшешть	27.23	45.87	30	Олтеница	26.64	44.09
11	Мэчин	28.14	45.25	31	Питешть	24.87	44.86
12	Текуч	27.43	45.86	32	Роман	26.93	46.93
	3–4 балла			33	Рымникул-Вылча	24.37	45.11
13	Болдешть-Скэень	26.03	45.03	34	Синая	25.55	45.35
14	Гэешть	25.32	44.72	35	Слобозия	27.37	44.56
15	Констанца	28.64	44.17	36	Тулча	28.80	45.18
16	Кымпина	25.74	45.12	37	Тырговиште	25.46	44.93
17	Онешть	26.79	46.25	38	Чернавода	28.04	44.34
18	Плоешть	26.03	44.94	39	Яссы	27.59	47.16
19	Рымникул Сэрат	27.05	45.38		2–3 балла		
20	Сфынтул Георге	25.79	45.86	40	Сучава	26.26	47.65

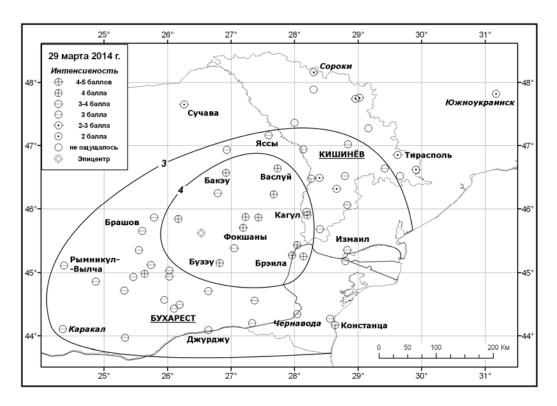


Рис. 3. Распределение интенсивности сотрясений землетрясения 29 марта 2014 г. на территории Молдовы, Украины и Румынии.

3 апреля. Кагул (3 балла) Опрошено 43 человека, ощутили лёгкие сотрясения — 31 человек. 5 из них почувствовали землетрясение в движении, остальные — в спокойном состоянии. Кишинев (2 балла) На верхних этажах зданий дребезжали стёкца

24 августа. Кагул (2 балла) Опрошено 38 человек, только 1 человек ощутил лёгкие колебания и услышал гул. Был сильный дождь.

Землетрясение 10 сентября 2014 г.

Землетрясение 10 сентября 2014 г. хотя и уступает по своим энергетическим характеристикам сильнейшим землетрясениям области Вранча, но значительно превосходит по магнитуде уровень сейсмического фона.

Землетрясение в Кишиневе произошло в $22 \ u \ 45 \ m$ по местному времени. Не все спящие просыпались, но находящиеся в покое ощутили явственные колебания. Жительницу второго этажа на Телецентре подбросило с кровати. Н.А. Симонова почувствовала землетрясение, находясь на улице. Перед землетрясением слышался гул.

Кагул. Опрошено 102 человека, ощутили два толчка и слабые колебания — 81. Некоторые слегка испугались и вышли на улицу. Слышался гул, шум, треск. Скрипели потолки, двери, мебель. Раскачивались люстры. Беспокоились собаки. Внутри помещений образовались небольшие трещины.

Балаурешты. Ощущалось большинством 3—4 толчка. Колебались окна, двери. Трещала крыша.

Джурджулешты. Одно короткое горизонтальное колебание. Колебались цветы в вазонах.

С. Ивановка Хынчештского района. Большинство спящих проснулось. Один быстрый толчок с юго-запада. Перед землетрясением был слышен гул. Тонкие трещины в старых стенах.

Оницканы. Многие спящие проснулись. Почувствовали в течение 30 *сек* горизонтальные колебания. Качались люстры, цветы в вазонах, колебались двери. Беспокоились собаки. Цвет неба стал красным.

Кантемир. В квартире на 4 этаже до землетрясения был слышен гул как от тяжело груженного транспорта, лаяли собаки. Затем ощущались две волны колебаний с севера на юг, дребезжала посуда, колебались люстры. Спящие дети не проснулись.

Вулканешты. Чимишлия. Бендеры. Магдачешты. Кацалены. Старые Редены. Новая Сарата. Ощущалось многими людьми, находящимися в покое в течение нескольких секунд.

Бельцы. Тирасполь. Резина. Твардица. Корнешты. Некоторые ощутили слабое колебание. Один толчок ощущался в Страшенах, Рошу.

Жители Измаила ощутили небольшие подземные толчки, в результате которых дребезжала посуда, качались люстры и тряслась мебель.

В таблице 4 представлены результаты обработки макросейсмической информации в населенных пунктах Молдовы.

ОСОБЕННОСТИ СЕЙСМИЧЕСКОГО ПРОЦЕССА В КАРПАТСКОМ РЕГИОНЕ В $2014~\Gamma \mathrm{OДY}$

Таблица 4. Пункты-баллы землетря
сения 10 сентября 2014 г. на территории Молдовы

No	Населённый пункт	с. ш.	в. д.	No	Населённый пункт	с. ш.	в. д.
	4 балла				3 балла		
1	Балаурешты	28.14	46.94	15	Новая Сарата	28.39	46.49
2	Ивановка	28.20	46.88	16	Старые Редены	28.00	47.29
3	Кагул	28.20	45.90	17	Чимишлия	28.79	46.52
	3–4 балла				2–3 балла		
4	Вулканешты	28.40	45.68	18	Корнешты	28.00	47.36
5	Дезгинже	28.62	46.42	19	Резина	28.96	47.74
6	Джурджулешты	28.20	45.48	20	Страшены	28.61	47.14
7	Измаил	28.83	45.35	21	Твардица	28.97	46.15
8	Кантемир	28.23	46.28		2 балла		
9	Кацалены	28.18	46.92	22	Бельцы	27.92	47.76
10	Кишинёв	28.84	47.02	23	Тирасполь	29.62	46.85
11	Оницканы	29.07	47.15		Не ощущалось		
12	Рошу	28.19	45.95	24	Калинешты	27.48	47.57
	3 балла			25	Пырлица	27.88	47.32
13	Бендеры	29.46	46.82	26	Штефан-Водэ	29.66	46.52
14	Магдачешты	28.83	47.14				

По данным бюллетеня ISC [2] землетрясение ощущалось на территории Румынии с интенсивностью колебаний в 4 балла в городах Бакэу. Тыргу-Окна. Галац. Кымпина. Васлуй.

В таблице 5 приводятся результаты обработки макросейсмической информации на румынской территории [1].

Таблица 5. Пункты-баллы землетрясения 10 сентября 2014 г. на территории Румынии

№	Населённый пункт	с. ш.	В. Д.	No	Населённый пункт	с. ш.	В. Д.
	5 баллов				3-4 балла		
1	Бэйкой	25.88	45.03	13	Плопень	25.96	45.05
	4-5 баллов			14	Пятра-Нямц	26.37	46.93
2	Онешть	26.79	46.25	15	Роман	26.93	46.93
3	Тыргу-Окна	26.62	46.28	16	Синая	25.55	45.35
	4 балла			17	Сфынтул-Георге	25.79	45.86
4	Бакэу	26.92	46.57	18	Яссы	27.59	47.16
5	Бузэу	26.82	45.15		3 балла		
6	Буфтя	25.95	44.57	19	Агнита	24.62	45.97
7	Васлуй	27.73	46.64	20	Александрия	25.33	43.97
8	Галац	28.04	45.43	21	Брашов	25.60	45.65
9	Морень	25.64	44.98	22	Бухарест	26.10	44.43
10	Плоещть	26.03	44.94	23	Джурджу	25.97	43.90
11	Текуч	27.43	45.86	24	Констанца	28.64	44.17
	3-4 балла			25	Мангалия	28.57	43.82
12	Кэлэрашь	27.33	44.20	26	Сучава	26.26	47.65

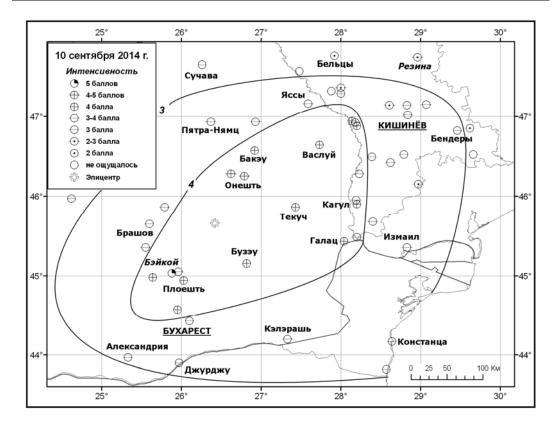


Рис. 4. Распределение интенсивности сотрясений землетрясения 10 сентября 2014 г. на территории Молдовы. Украины и Румынии.

3 ноября. Кагул. (2 балла) Опрошено – 48 человек. Только трое из них что-то почувствовали.

Землетрясение 22 ноября 2014 г.

Наиболее значительным коровым событием за инструментальный период наблюдений было землетрясение 22 ноября 2014 г. с магнитудой M=5.7 и глубиной очага 40 км. Сеть сейсмических станций Румынии отметила 75 афтершоков в течение 72 часов с наибольшей магнитудой M=3.1 в интервале глубин 16—47 км. Землетрясения в данной зоне продолжались вплоть до 19 января 2015 г. Наибольшим был афтершок 7 декабря с M=4.5. Очаги связаны с активизацией разлома Печеняга-Камена.

Землетрясение ощущалось в Румынии и соседних странах: Болгарии, Молдове, Украине.

В Болгарии событие ощутили жители Руссе, Варны, Плевена, Добрича, Шумена, Силистры, Севлиево, Несебра, Бургаса, Ловеча, Тутракана, Тырговиште, Пловдива, Пазарджика, Велико Тырново, Сливена, Разграда.

В Варне землетрясение продолжалось всего 10 *сек*, в Бургасе – около минуты, жители выбегали на улицу. В Софии – не ощущалось [4].

ОСОБЕННОСТИ СЕЙСМИЧЕСКОГО ПРОЦЕССА В КАРПАТСКОМ РЕГИОНЕ В $2014~\Gamma\mathrm{OДY}$

На территории Молдовы землетрясение проявилось следующим образом.

Кагул. Опрошено 114 человек, ощутили — 112. Большинство ощутили два толчка, сильные колебания. Многие вышли на улицу. Слышался гул. В домах слышался скрип стен и полов, звенела посуда. Наблюдалось падение лёгких предметов (2 случая). Раскачивалась мебель в юго-западном направлении. Из наполненных сосудов выплёскивалась вода. В отдельных домах обнаружены лёгкие трещины.

Кишинев. Ощущали большинство. Все звонившие на станцию люди чувствовали горизонтальные колебания в течение 2–3 минут, некоторые испугались.

На сейсмостанцию «Кишинев» пришло 17 писем от постоянных сейсмокорреспондентов.

Чимишлия, Ивановка Хынчештского района. Падали легкие предметы, появились мелкие трещины в стенах.

Макарешты, Устье. Ощущалось большинством жителей.

Бушила. Один быстрый толчок.

Плоп-Штюбей, Новая Сарата. Некоторые спящие проснулись.

Балаурешты. Дрожал пол, колебалась вода в вазах.

Магдачешты. Изменился уровень волы в колодцах.

Попоуцы, Гординешты, Мешены и Царёвка. Дребезжали стекла. Некоторые жители проснулись и испугались

22 ноября по данным соцсетей землетрясение в Молдове ощущалось в Вулканештах, Тараклии, Слободзии, Тирасполе, Дубоссарах, Днестровске, Бельцах.

В Вулканештах на одной из подстанций взорвался трансформатор.

В южных областях Украины землетрясение ощущалось в городах: Измаил, Одесса, Ильичевск, Болград, Котовск, Южноукраинск, Николаев, Херсон.

В Измаиле (4 *балла*) раскачивались люстры, и звенела посуда в квартирах. Многие жители покинули свое жилье. Наблюдались перебои с электроэнергией, неустойчивая мобильная связь, пропал Интернет.

В Одессе на верхних этажах отмечалось слабое покачивание, колебание висячих предметов (3 балла).

Землетрясение также проявилось в Виннице, Запорожье, Кривом Роге, Черновцах, Днепропетровске, Кировограде, Тернополе, Черкассах, Ирпене и даже в нескольких районах Киева.

В результате обработки имеющейся информации составлены таблицы 6-8.

Макросейсмическая картина для коровых землетрясений Карпатского региона имеет определенные закономерности. Максимальная интенсивность сотрясений фиксируется в ближайших от эпицентра населенных пунктах, с расстоянием макросейсмический эффект убывает. Первые изосейсты повторяют форму очага. Как правило, макросейсмический эпицентр близок с инструментально определенным или же совпадает с ним.

Таблица 6. Пункты-баллы землетря
сения 22 ноября 2014 г. на территории Молдовы

$N_{\underline{0}}$	Населённый пункт	с. ш.	В. Д.	$N_{\underline{0}}$	Населённый пункт	с. ш.	В. Д.
	4-5 балла				3–4 балла		
1	Ивановка	28.20	46.88	12	Макарешты	27.97	47.06
2	Кагул	28.20	45.90	13	Новая Сарата	28.39	46.49
	4 балла			14	Плоп-Штюбей	29.54	46.67
3	Балаурешты	28.14	46.94	15	Устье	29.12	47.25
4	Вулканешты	28.40	45.68		3 балла		
5	Кацалены	28.18	46.92	16	Бельцы	27.92	47.76
6	Кишинёв	28.84	47.02	17	Бушила	27.80	47.39
7	Комрат	28.66	46.32	18	Гординешты	28.80	47.70
8	Тараклия	28.67	45.90	19	Днестровск	29.91	46.62
9	Чимишлия	28.79	46.52	20	Мешены	28.64	47.67
	3–4 балла			21	Попоуцы	28.92	47.80
10	Дубоссары	29.16	47.27	22	Слободзея	29.71	46.73
11	Магдачешты	28.83	47.14	23	Тирасполь	29.62	46.85

Таблица 7. Пункты-баллы землетрясения 22 ноября 2014 г. на территории Украины

No	Населённый пункт	с. ш.	в. д.	№	Населённый пункт	с. ш.	В. Д.
	4 балла				2–3 балла		
1	Болград	28.62	45.68	10	Южноукраинск 31.		47.82
2	Измаил	28.83	45.35		2 балла		
	3 балла			11	Днепропетровск	35.00	48.46
3	Ильичёвск	30.65	46.30	12	Запорожье	35.14	47.84
4	Котовск	29.53	47.74	13	Ирпень	30.24	50.52
5	Одесса	30.72	46.46	14	Киев	30.51	50.44
6	Черновцы	25.94	48.30	15	Кировоград	32.26	48.51
	2–3 балла			16	Кривой Рог	33.39	47.91
7	Винница	28.48	49.23	17	Тернополь	25.60	49.55
8	Николаев	31.99	46.98	18	Черкассы	32.07	49.43
9	Херсон	32.62	46.64				

Таблица 8. Пункты-баллы землетрясения 22 ноября 2014 г. на территории Румынии [1]

№	Населённый пункт	с. ш.	В. Д.	No	Населённый пункт	с. ш.	В. Д.
1	2	3	4	5	6	7	8
	5–6 баллов				4 балла		
1	Аджуд	27.18	46.10	19	Констанца	28.64	44.17
	5 баллов			20	Кэлэрашь	27.33	44.20
2	Брэила	27.96	45.27	21	Нэводарь	28.61	44.32
3	Галац	28.04	45.43	22	Пьятра-Нямц	26.37	46.93
4	Мэрэшешть	27.23	45.87	23	Слобозия	27.37	44.56
5	Онешть	26.79	46.25	24	Тыргу-Окна	26.62	46.28
6	Рымникул-Сэрат	27.05	45.38	25	Урзичень	26.64	44.71
7	Сфынтул-Георге	25.79	45.86	26	Яссы	27.59	47.16

_	_	_
Прололжение	таблины	×

1	2	3	4	5	6	7	8
8	Текуч	27.43	45.86		3 балла		
9	Тулча	28.80	45.18	27	Ботошань	26.66	47.75
10	Фокшаны	27.19	45.70	28	Зимнича	25.37	43.66
	4 балла			29	Зэрнешть	25.34	45.57
11	Бабадаг	28.72	44.89	30	Ковасна	26.17	45.84
12	Бакэу	26.92	46.57	31	Питешть	24.87	44.86
13	Болдешть-Скэень	26.03	45.03	32	Плоешть	26.03	44.94
14	Брашов	25.60	45.65	33	Синая	25.55	45.35
15	Бузэу	26.82	45.15	34	Сучава	26.26	47.65
16	Бухарест	26.10	44.43		2–3 балла		
17	Бырлад	27.67	46.23	35	Аюд	23.73	46.31
18	Васлуй	27.73	46.64	36	Беклян	24.18	47.18

Характерным примером служит карта изосейст землетрясения 22 ноября 2014 года (Рис. 5).

Наибольшие ощущаемые на территории Молдовы коровые землетрясения, приуроченные к гипоцентральной зоне исследуемого события 22 ноября, отмечены 4 марта 1894 г., 25 мая 1912 г., 31 мая 1959 г. За инструментальный период наблюдений землетрясение 22 ноября 2014 г. оказалось наибольшим по величине магнитуды.

7 декабря 2014 г. коровое землетрясение в этой зоне ощущалось на территории Румынии с интенсивностью 4 балла по шкале Меркалли в городах Бухарест. Бакэу. Бузэу. Фокшаны. Галац; 3 балла в Брашов. Констанца. Плоешть. В Кишиневе особенно ощущалось на верхних этажах (3–4 балла).

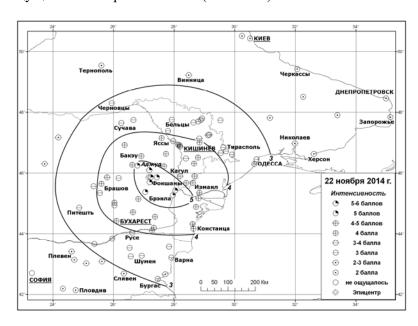


Рис. 5. Распределение интенсивности сотрясений землетрясения 22 ноября 2014 г. на территории Молдовы, Украины, Румынии и Болгарии.

Кагул (3–4 *балла*). Опрошено 52 человека, ощутили все опрошенные. Колебания чувствовались 3–4 *секунды*. 17 человек проснулись от землетрясения. Некоторые испугались. Землетрясение ощущалось на разных этажах зданий. Некоторые слышали звон стёкол в окне. Во время землетрясения беспокоились животные и птицы.

Кишинев (2 балла). Слабое покачивание ощутили отдельные люди.

12 декабря. Кагул (2 балла). Опрошено 29 человек, ощутили слабые колебания -3, "кажется, что-то было" -1.

3. МЕХАНИЗМЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ 2014 ГОДА

Имеются варианты решения 4 механизмов очагов землетрясений 2014 г. по методу первых вступлений *P*-волн и по методу тензора момента центроида [1, 2, 5]. Решения представлены в табличном (Табл. 9) и в графическом виде (Рис. 6–9) в проекции нижней полусферы.

Таблица 9. Параметры механизмов очагов карпатских землетрясений 2014 г.

		П	лоско	сть	П	лоско	сть							
$N_{\underline{0}}$	Дата		NP1			NP2		P)	В	}	T	,	Источник
		Stk	Dp	Slip	Stk	Dp	Slip	Az	P1	Az	P1	Az	P1	
1	29 03	352	36	96	160	54	84	256	10	162	6	54	80	BUC
		22	31	82	211	59	95	298	14	29	4	134	76	GCMT
		33	37	102	198	53	81	295	8	204	7	73	79	MED
		1	37	76	198	55	100	281	9	12	8	144	78	GFZ
2	10 09	296	63	104	89	30	66	16	14	109	13	238	70	BUC
		287	60	96	93	32	78	16	15	102	6	196	76	GFZ
3	22 11	134	76	-86	295	15	-106	50	60	311	5	220	30	BUC
		251	58	-141	138	58	-39	105	49	284	41	14	0	ИОЦ ГС РАН
		248	47	-166	148	80	-44	98	37	318	45	205	21	NEIC
		238	33	-179	148	89	-57	82	45	304	30	215	36	IPGP
		247	30	-162	140	82	-72	82	56	316	78	210	30	INGV
		144	87	-80	252	11	-162	65	47	324	10	225	41	MED
		140	84	-74	249	17	-160	67	48	318	16	216	37	GCMT
4	07 12	289	33	-108-	130	59	-78	68	72	304	10	212	14	BUC
		148	75	-56	259	37	-154	95	49	318	33	213	23	MED

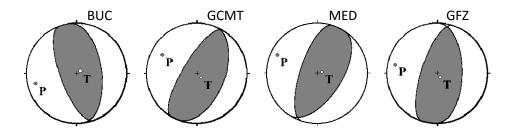


Рис. 6. Стереограммы механизмов очага землетрясения 29 марта 2014 года в проекции нижней полусферы (зачернены области сжатия).

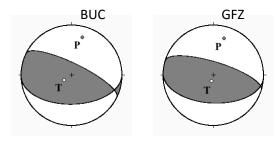


Рис. 7. Стереограммы механизмов очага землетрясения 10 сентября 2014 года в проекции нижней полусферы (зачернены области сжатия).

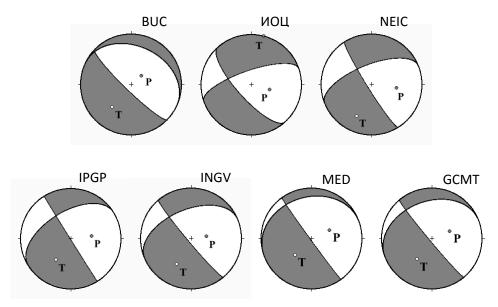


Рис. 8. Стереограммы механизмов очагов землетрясений 22 ноября 2014 года в проекции нижней полусферы (зачернены области сжатия).

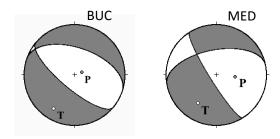


Рис. 9. Стереограммы механизмов очагов землетрясений 2014 года в проекции нижней полусферы (зачернены области сжатия).

В каталоге [1] имеется решение механизма очага 29 марта по 59 знакам вступлений волн P на сейсмических станциях мира. Знаки хорошо разделяются на стереографической проекции. Обе нодальные плоскости ориентированы в направлении северо-запад — юго-восток. Ось сжатия близгоризонтальна и направлена на юго-запад. Ось растяжения близвертикальна. В очаге произошла надвиговая подвижка.

В решениях GCMT, GFZ, MED RCMT [2] изменились ориентации нодальных плоскостей по сравнению с первым решением.

Имеется решение механизма очага 10 сентября по 68 знакам вступлений [1]. Знаки хорошо разделяются на стереографической проекции. Одна из нодальных плоскостей крутая и ориентирована в направлении северо-запад — юго-восток. Другая альтернативная плоскость пологая и ориентирована в направлении западвосток. Ось сжатия близгоризонтальна и направлена на северо-восток. Ось растяжения близвертикальна. При изучении механизма очага выявлено, что станции Кишинев (KIS) и Малые Милешты (МІLМ) лежат вблизи нодальной плоскости NP2 (поверхности, на которой смещения в продольных волнах или определенные компоненты в поперечных равны нулю). По этой плоскости произошла надвиговая подвижка. На сейсмограммах отмечена малая величина амплитуд в волне P.

Решение GFZ [2] совпадает с предыдущим.

В каталоге [1] имеется решение механизма очага землетрясения 22 ноября по 54 знакам вступлений волн P на сейсмических станциях Румынии и Молдовы. По данным ИОЦ ГС РАН [5] решение механизма очага получено по знакам на 60 станциях мира. Знаки хорошо разделяются на стереографической проекции. Одна из плоскостей крутая, вторая возможная плоскость пологая. Движение в очаге возникло под действием растягивающих напряжений.

Приведены механизмы очага по данным Национального центра информации о землетрясениях Геологической службы США. USGS NEIC на основе W-phase Moment Tensor, по данным центра Quick CMT, IPGP, INGV [5], MED RCMT, GCMT [2].

Решения по данным разных центров подобны. Во всех случаях одна из нодальных плоскостей имеет юго-восточное простирание ($Stk=246-295^{\circ}$) и наклонена к горизонту близвертикально ($Dp=58-84^{\circ}$). Тип движения – левосторонний сдвиг с компонентами сброса. Другая альтернативная плоскость залегает как полого, так и под большим углом ($Dp=15-58^{\circ}$).

Близкое решение получено по 50 знакам для корового события 7 декабря 2014 г. [1]. Решение MED согласуется с предыдущим. Ось растяжения близгоризонтальна (Pl=14-23°), ось сжатия наклонна (Pl=49-72°).

Анализ механизмов очагов средних по энергетике землетрясений 2014 года показал, что в небольшом сейсмогенном объёме наблюдается хаотичная ориентация плоскостей разрыва в соответствии с приуроченностью эпицентров к различным частям Карпатской горной дуги. Очаги землетрясений относятся к разным этажам глубин. Практически произошла разрядка напряжения во всей области Вранча.

ОСОБЕННОСТИ СЕЙСМИЧЕСКОГО ПРОЦЕССА В КАРПАТСКОМ РЕГИОНЕ В $2014~\Gamma\mathrm{OДY}$

ЗАКЛЮЧЕНИЕ

В 2014 году в районе зоны Вранча произошла разрядка напряженности практически на всех этажах глубин фокальной зоны в диапазоне глубин 85– $145~\kappa M$. Максимальными событиями с промежуточной глубиной очага были землетрясения 29 марта и 10 сентября 2014 г. Землетрясение области Вранча 29 марта ощущалось в г. Кишинев с интенсивностью 3–4 балла, а 10 сентября — на территории на югозападе Молдовы до 4 баллов. Наиболее значительным событием за инструментальный период наблюдений было землетрясение 22 ноября 2014 г. с магнитудой M = 5.7, произошедшее в земной коре на глубине очага $40~\kappa M$. Оно ощущалось в Румынии и соседних странах: Болгарии, Молдове, Украине. Четырехбалльные колебания достигли г. Кишинева.

Анализ механизмов очагов средних по энергии землетрясений 2014 года показал, что в небольшом сейсмогенном объёме наблюдается хаотичная ориентация плоскостей разрыва в соответствии с приуроченностью эпицентров к различным частям Карпатской горной дуги. Очаги землетрясений относятся к разным этажам глубин. Землетрясения надвигового типа с промежуточной глубиной очага произошли под действием сил субгоризонтального сжатия.

Список литературы

- 1. Institutul Naţional pentru Fizica Pamântului C.P. MG-2. Bucuresti Magurele. România. http://www1.infp.ro/arhiva-in-timp-real/.
- 2. Bulletin of the International Seismological Centre. /.http://www.isc.ac.uk/iscbulletin
- 3. Raport cutremur 22 11 2014. Zona Vrancea. http://www.infp.ro/wp-content/uploads/2014/11/2014 11 22.pdf.
- 4. Румынское землетрясение в Болгарии 22 ноября 2014 г. http://varyadavydova.com/rumynskoe-zemletryasenie-v-bolgarii-22-oktyabrya-2014/.
- 5. ИОЦ ГС РАН Информационное сообщение об ощутимом землетрясении в Румынии 22 ноября 2014 г. http://www.ceme.gsras.ru/cgi-bin/ceme/quake stat.pl?sta=20144272&l=0

PECULIARITIES OF THE SEISMIC PROCESS IN THE CARPATHIAN REGION IN 2014

Stepanenko N. Ya., Cardanets V. Yu., Simonova N.A.

Institute of Geology and Seismology, Academy of Sciences of Moldova, Chisinau E-mail: seismolab@rambler.ru

Seismicity of the Carpathian region in 2014 is considered on the basis of observations by the network of seismic stations of Moldova and the data of the National Institute for Earth Physics in Bucharest.

The distribution by months of the year of the number of undercrust earthquakes, maximum magnitudes and the depths of foci of the Vrancea region are shown. The earthquakes occurred at the depth of 85–145 km. The maximum events with intermediate depth of the earthquake center were the earthquakes on 29 March and 10 September 2014.

The most significant crustal event in the instrumental period of observations was the earthquake on November 22, 2014, with the magnitude of M = 5.7 and the focus depth 40 km. The foci are connected with the activation of the fault Pecenyaga-Kamena.

Maps of isoseismals of intermediate earthquakes on March 29, 10 September 2014 were built. The earthquake in the Vrancea region on March 29 was felt in the epicenter with intensity 4–5, in Chisinau it was felt with intensity 3–4 points. The map of isoseismals of the September 10 earthquake was constructed on the basis of 52 points. In the epicenter it was 4–5 points, in the South-West of Moldova, the intensity of oscillations did not exceed 4 points.

The earthquake on November 22 was felt in Romania and the neighboring countries: Bulgaria, Moldova, Ukraine. The 5 point contour surrounds the territory in the South-East of Romania, in the area of Adjud, Fokshani, Rimnicul-Serat, Braila. The four point fluctuation has reached Chisinau.

3 point contour goes through the arc of the Chernovtsy – Vinnitsa – Odessa. Solutions of 4 focal mechanisms of earthquakes in 2014 by the method of first arrivals of P-waves and by the method of centroid moment tensor have been described. In the sources of 29 March and 10 September earthquakes there were thrust shifts. Crustal events of November 22 and December 7 occurred under the action of tensile stresses and are fault displacements in nature.

Solutions according to the data of different centers are similar. In all cases, one of the nodal planes has a South-East strike and is inclined to the horizon nearly vertically. The type of motion is a left-hand shift with fault components. Another alternative plane lies both gently and at a large angle.

Analysis of focal mechanisms of medium-energy earthquakes of 2014 showed that in a small seismogenic volume chaotic orientation of the planes of rupture is observed in accordance with the confinement of the epicenters to the various parts of the Carpathian mountain arc. Earthquake foci are in different floors of the depth. The thrust type earthquakes with intermediate depth of the focus have occurred under the action of subhorizontal compression.

Key words: Vrancea region, intensity, isoseists, focal mechanism, aftershock, stress, nodal plane.

References

- Institutul Naţional pentru Fizica Pamântului C.P. MG-2. Bucuresti Magurele. România. http://www1.infp.ro/arhiva-in-timp-real/.
- 2. Bulletin of the International Seismological Centre. http://www.isc.ac.uk/iscbulletin/.
- Raport cutremur 22 11 2014. Zona Vrancea. http://www.infp.ro/wp-content/uploads/2014/11/2014 11 22.pdf.
- The Romanian earthquake in Bulgaria on November 22 2014 http://varyadavydova.com/rumynskoe-zemletryasenie-v-bolgarii-22-oktyabrya-2014/.
- IPC GS RAS Information message about appreciable earthquake in Romania on November 22 2014 http://www.ceme.gsras.ru/cgi-bin/ceme/quake_stat.pl?sta=20144272&l=0

Ученые записки Таврического национального университета имени В. И. Вернадского Серия «География». Том 27 (66), № 2. 2014 г. С. 169–178.

УДК 550.348.435

УТОЧНЕННЫЕ ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА 1990 ГОЛА

Пустовитенко Б.Г.

Отдел сейсмологии Института геофизики им. С.И. Субботина НАНУ, г. Симферополь, Россия

E-mail: <u>bpystovitenko@mail.ru</u>

Представлены результаты переинтерпретации амплитудных спектров объемных сейсмических волн и динамических параметров очагов ощутимых землетрясений Крыма 1990 года и наиболее сильных повторных толчков. Динамические параметры очагов откорректированы с учетом новых данных о механизмах очагов главных толчков 2 июля и 16 августа 1990 г. и направленности сейсмического излучения на станции регистрации. Дополнительно для каждого сейсмического события оценена энергия образования дислокации в очаге и магнитуда по сейсмическому моменту.

Ключевые слова: механизм очага, направленность излучения, сейсмический момент, радиус дислокации, сброшенное напряжение, энергия дислокации, моментная магнитуда

ВВЕДЕНИЕ

В период с 29 июня по 8 августа 1990 г. на материковой части Крыма между городами Алушта и Судак произошла серия землетрясений в диапазоне энергетических классов K_{Π} =3.8 ÷10.9, два из которых 29 июня $12^{\rm h}07^{\rm m}41.5^{\rm c}$, K_{Π} =10.8 и 2 июля 1990 г. в $0^{\rm h}35^{\rm m}50.9^{\rm c}$ с K_{Π} =10.9 ощущались населением с интенсивностью от I=5 баллов до I=2-3 балла [1, 2]. Наибольший макросейсмический эффект в обоих случаях проявился в районе села Приветное, расположенного на расстоянии 13÷14 κM от инструментальных эпицентров [1, 2]. 16 августа этого же года на расстоянии 35 κM от с. Приветное в море произошло еще одно сильное землетрясений с K_{Π} =12.8, которое ощущалось на побережье с интенсивностью от I=4 δa лла до I= 2-3 δa лла [1, 2].

По данным записей аналоговых сейсмических станций Крыма были рассчитаны амплитудные спектры и определены динамические параметры очагов этих ощутимых толчков и их наиболее сильных форшоков и афтершоков [2, 3]. Отсутствие в то время данных о механизме очагов не позволило авторам работ [2, 3] корректно учесть направленность излучения сейсмических волн на станции регистрации при расчете сейсмического момента, что существенно снижает точность полученных оценок всех динамических параметров. Сильные и ощутимые землетрясения с эпицентрами на материковой части Крыма явления довольно редкие, потому уточнение и повышение точности оценок их очаговых параметров с появлением новых экспериментальных данных является актуальной задачей для последующего решения различных задач геодинамики региона, а также разработки моделей очага и сейсмичности для оценки долговременной сейсмической опасности территории.

1. ИСХОДНЫЕ ДАННЫЕ

К настоящему времени собраны, проанализированы первичные записи волновых форм землетрясения 2 июля 1990 г. и 16 августа 1990 г., уточнены знаки

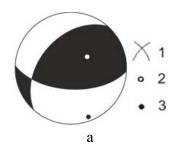
первых вступлений продольных волн, оценена степень их достоверности и надежности. Это в совокупности с опубликованными данными в ISC [4] позволило получить надежные решения механизмов очагов [5, 6] и откорректировать ранее полученные оценки динамических параметров.

В данной работе представлена новая интерпретация амплитудных спектров из [3] и уточненные значения динамических параметров очагов главных толчков 29 июня в $12^{\rm h}07^{\rm m}41.5^{\rm c}$ с $K_{\rm II}=10.8,~2$ июля в $0^{\rm h}35^{\rm m}50.9^{\rm c}$ с $K_{\rm II}=10.9,~16$ августа в $04^{\rm h}32^{\rm m}18.3^{\rm c}$ и пяти связанных с ними афтершоков. Основные параметры изученных землетрясений даны в табл. 1 по данным каталога за 1990 г. [7].

Таблица 1. Основные параметры изученных землетрясений 1990 г.

№		Дата		Время			Кс	ордина	ГЫ	Mw**	K_{Π}
							ГИ	поцент	oa		
	год	мес.	число	час	мин	сек	φ°, N	λ°. E	h, км		
1	1990	6	29	12	7	41.5	44.77	34.55	17	4.25	10.8
2	1990	6	29	12	9	46.7	44.76	34.56	17	3.5	8.6
3	1990	6	29	12	10	28.9	44.76	34.53	17	3.9	10
4	1990	7	2	0	35	50.9	44.78	34.53	14	4.25	10.9*
5	1990	8	6	20	40	8.6	44.77	34.41	20	3.0	7.5
6	1990	8	16	4	32	18.3	44.70	35.06	28	4.9	12.8*
7	1990	8	16	5	19	34.4	44.72	35.13	20	3.0	7.9
8	1990	8	16	15	33	32.3	44.73	35.00	18	3.1	8.1

^{*-} есть решение механизма очага


Динамические параметры очагов землетрясений 1990 г. переопределены по амплитудным спектрам аналоговых записей поперечных *S*-волн на сейсмических станциях Крыма: «Алушта» (ALU), «Казантип» (KZN), «Симферополь» (SIM), «Судак» (SUDU) и «Ялта» (YAL), взятых из [3].

2. МЕТОДИКА И РЕЗУЛЬТАТЫ

Механизмы очагов землетрясений 1990 года восстановлены по знакам первых вступлений продольных волн на сейсмических станциях, окружающих очаг в широком азимутальном створе. Использована стандартная методика [8]. Углы выхода сейсмических волн определены для удаленных станций по годографу «ak135» [9], а для близких — по региональному годографу [10]. Решения механизмов очагов по работам [5, 6] представлены на рисунке 1 и в таблице 2.

^{**-} по данным настоящей статьи

УТОЧНЕННЫЕ ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА 1990 ГОДА

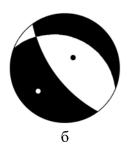


Рис. 1. Стереограммы механизмов очагов (нижняя полусфера) ощутимых землетрясений 1990 г.: a-2 июля в $0^{\rm h}35^{\rm m}50.9^{\rm c}$; $\delta-16$ августа в $04^{\rm h}32^{\rm m}18.3^{\rm c}$. I- нодальные линии; 2,3- оси главных напряжений растяжения и сжатия соответственно; зачернена область волн сжатия.

Таблица 2. Параметры механизмов очагов землетря
сений 2 июля и 16 августа 1990 г.

Дата,	$t_{0,}$	h,	(оси гла	авнь	іх напря	жен	ий]	Нода	льные	плосі	кост	И
гм д	ч мин с	км		T		N		P		NP1			NP2)
			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1990 07 02	00 35 50.9	14	61	55	28	254	8	160	93	59	123	221	44	48
1990 08 16	04 32 18.3	28	19	223	14	317	67	81	144	65	-75	292	29	-118

Землетрясение 2 июля в $0^{\rm h}35^{\rm m}50.9^{\rm c}$ произошло под действием горизонтальных ($PL_{\rm P}=8^{\circ}$) напряжений сжатия, ориентированных близмеридионально ($AZM_{\rm P}=160^{\circ}$). Одна из нодальных плоскостей NP1 наклонная ($DP=59^{\circ}$), имеет близширотное простирание ($STK=93^{\circ}$), а вторая NP2 – юго-западное ($STK=221^{\circ}$) с более пологим наклоном ($DP=44^{\circ}$). Подвижка по обеим нодальным плоскостям правосторонний по NP1 и левосторонний – по NP2 взбросо-сдвиг с преобладанием взбросовой составляющей ($Puc.\ 1, a$).

Простирание нодальной плоскости NP1 (STK=93°) совпадает с широтной (Az=90°±10°) ориентацией первой изосейсты [2]. В связи с этим эту плоскость подвижки можно принять как наиболее вероятную (главную). Исходя из подобия ориентации изосейст [2] двух близких по пространственному положению и энергетическому уровню землетрясений 29 июня в $12^h07^m41.5^c$ с K_{Π} =10.8 и 2 июля в $0^h35^m50.9^c$ с K_{Π} =10.9 и однотипности знаков первых вступлений на пяти региональных станциях Крыма [7], можно предположить близость их механизмов очагов.

Землетрясение 16 августа в $04^{\rm h}32^{\rm m}18.3^{\rm c}$ произошло в условиях горизонтального растяжения (Рис. 1, δ). Обе нодальные плоскости диагональной ориентации: $STK=144^{\circ}$ с крутым падением в сторону моря и $STK=292^{\circ}$ с пологим падением к северо-востоку. В очаге произошел сброс активного крыла разрыва. За наиболее

вероятную плоскость разрыва можно принять близвертикальную плоскость NP1, азимут простирания которой близок к ориентации первой изосейсты [1, 2].

По параметрам механизма очагов для обоих землетрясений рассчитаны функции направленности излучения объемных волн из очага и поправки за направленность излучения $R_{\theta} \phi$ для станций регистрации, записи которых использованы в данной работе для уточнения динамических параметров очагов (Табл. 3).

Таблица 3. Значения поправок за направленность излучения $R_{\theta} \phi$ для поперечных (S) волн землетрясений 2 июля 1990 г. и 16 августа 1990 г.

Станция	SIM	ALU	YAL	KAZ
R_{θ} ф , 02.07.1990 в 0 ^h 35 ^m 50.9 ^c		0.45		0.58
R_{θ} φ, 16.08.1990 в 04 ^h 32 ^m 18.3 ^c	0.53	0.56	0.54	

Динамические параметры очага землетрясения включают: M_0 — сейсмический момент, r_0 — радиус круговой дислокации, $\Delta \sigma$ — сброшенное напряжение, $\eta \overline{\sigma}$ — кажущееся напряжение, $\Delta \sigma_{\rm r}$ — радиационное трение, ε — деформацию сдвига, \overline{u} — среднюю подвижку по разрыву, Eu — энергию образования дислокации в очаге.

Для определения этих параметров используются количественные связи между теоретическими моделями источников и основными характеристиками амплитудных спектров объемных волн. В данной работе использована теоретическая дислокационная модель Брюна [11] в рамках которой удовлетворительно аппроксимируются экспериментальные амплитудные спектры записей землетрясений Крыма [12]. Методика интерпретации спектров с использованием данной модели и формулы расчета динамических параметров очага по низкочастотному уровню спектра Ω_0 и угловой частоте f_0 приведены в работах [12–15].

Спектры и их новая интерпретация в рамках модели Брюна для главных ощутимых землетрясений приведены на рисунке 2. На графиках (Рис. 2) оси абсцисс сохранены в логарифмах периодов, как в ранних работах с аналоговыми записями [3, 12] в отличие от современного представления. Из рисунка 2 видно, что приведенные спектры удовлетворяют дислокационной модели Брюна со спадом спектральной плотности на малых периодах по квадратичному закону. Спектральная плотность Ω_0 в длиннопериодной части спектра и угловая частота f_0 (угловой период T) выделены уверенно.

Как уже было сказано выше, ранее [2, 3] динамические параметры были определены без учета реальной направленности излучения из очага. В данной статье при расчете скалярного сейсмического момента для очагов ощутимых землетрясений 29 июня $12^{\rm h}07^{\rm m}41.5^{\rm c}$, 2 июля в $0^{\rm h}35^{\rm m}50.9^{\rm c}$ и 16 августа в $04^{\rm h}32^{\rm m}18.3^{\rm c}$ учтена поправка за направленность излучения $R_{\theta\phi}$ в соответствии с таблицей 3.

УТОЧНЕННЫЕ ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА 1990 ГОДА

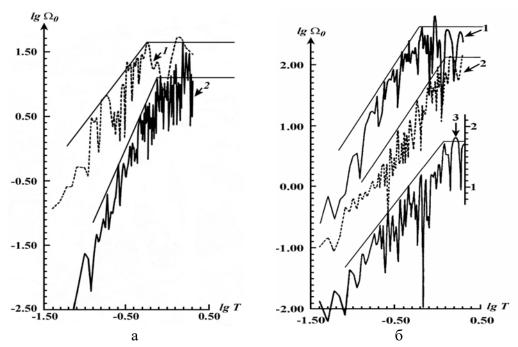


Рис. 2. Амплитудные спектры поперечных волн ощутимых землетрясений 1990 г. по [3]: a-2 июля в $0^{\rm h}35^{\rm m}50.9^{\rm c}$ по записям сейсмических станций: I- ALU, 2- KZN; 6-16 августа в $04^{\rm h}32^{\rm m}18.3^{\rm c}$ по записям: I- ALU, 2- SIM, 3- YAL. Прямыми линиями показана авторская аппроксимация спектров в рамках модели Брюна.

Кроме того дополнительно впервые для рассмотренных землетрясений произведена оценка энергии Eu по дислокации в очаге и сброшенному напряжению и моментная магнитуда Mw по сейсмическому моменту. Для расчета энергии образования дислокации в очаге Eu использована формула из [14]:

$$Eu = \frac{1}{2}\Delta\sigma\bar{u}\cdot\pi r_0^2$$

Моментная магнитуда Mw рассчитана по станционным оценкам сейсмических моментов M_0 с использованием формулы Канамори [15]:

$$Mw = 2/3 \cdot (\lg M_0 + 7) - 10.7$$
,

где M_0 имеет размерность $H \cdot M$ в системе СИ.

Результаты уточненных динамических параметров очагов восьми отобранных для анализа землетрясений 1990 г. приведены в таблице 4. Расчет среднего геометрического X и дисперсии S выполнен, как и прежде [12], исходя из логнормального закона распределения величин. Среднее значение магнитуды Mw определено как среднее арифметическое с соответствующей погрешностью.

Таблица 4. Уточненные динамические параметры землетрясений 1990 года

№ 1. 29 июня; t ₀ =12ч 07 мин 41.5с; φ=44.77°; λ =34.55°; h=17 км; K_{Π} =10.						
	127 4.2					
ALU S(N) 15.5 56 1.66 303 0.8 25.2 0.78 11.8 84 4.9 1	127	.26				
№ 2. 29 июня; t ₀ =12ч 09 мин 46.7c; φ=44.76°; λ =34.56°; h=17 км; K_{Π} =8.6	6					
SUDU S(E) 37.3 1.2 2.0 19.3 0.67 2.81 0.14 1.3 9.6 0.46 0	0.9 3.	3.5				
№ 3. 29 июня; t ₀ =12ч 10мин 28.9с; φ=44.76°; λ =34.53°; h=17 км; K_{Π} =10.0	0					
ALU S(E) 13.6 13.5 4.0 78.4 0.34 91.0 0.54 45 303 7.4 1	119 3.	3.9				
№ 4. 2 июля; t ₀ =00ч 35 мин 50.9c; φ=44.78°; λ=34.53°; h=14 км; K _{II} =10.9						
ALU S(N) 15 68.8 1.58 284 0.8 24.1 0.84 11.2 80.5 4.7 1	114 4.	1.2				
KZN S(N) 127 23.8 1.4 346 0.9 20.5 0.69 9.5 68.2 4.5 1	118 4.	1.3				
Х-среднее геометрическое 313 0.85 22.2 0.76 10.3 74.1 4.6 1	116 4.2	.25				
S- дисперсия 0.04 0.03 0.04 0.06 0.03 0.03 0.01 0	0.07 0.0	.05				
№ 5. 6 августа; <i>t</i> ₀ =20 <i>ч</i> 40 мин 08.6 <i>c</i> ; ϕ =44.77°; λ =34.41°; h =20 км; K_{Π} =7.5	.5					
SUDU S(E) 48 0.18 2.78 3.68 0.48 1.44 0.09 0.63 4.8 0.17 0	0.08 3.	3.0				
№ 6. 16 августа; t ₀ =04ч 32 мин 18.3с; φ=44.7°; λ =35.06°; h =28 км; $K_{\rm H}$ =12.	.8					
ALU S(N) 52 520 1.4 5070 0.96 25.2 1.49 125 841 58.6 21	1300 5.	5.1				
SIM S(E) 79 216 1.0 2700 1.34 49.0 2.79 21.7 163 15.9 2	2200 4.	1.9				
YAL S(N) 75 106 1.12 2080 1.20 53.0 3.62 22.9 177 15.4 1	1840 4.	1.8				
Х-среднее геометрическое 3054 1.15 46.6 2.47 39.6 290 24.3 4	4418 4.	1.9				
S- дисперсия 0.23 0.03 0.23 0.11 0.4 0.53 0.5 0	0.6 0.).1				
№ 7. 16 августа; t ₀ =05ч 19 мин 34.4с; φ=44.72°; λ=35.13°; h=20 км; K _{II} =7.	.9					
		3.0				
SUDU S(E) 21 0.35 2.6 3.96 0.52 1.26 0.17 0.46 4.21 0.16 0	0.08 3.	3.0				
Х-среднее геометрическое 3.89 0.53 1.17 0.17 0.41 3.03 0.25 0.	0.075 3.	3.0				
S- дисперсия 0.05 0.07 0.03 0 0.04 0.17 0.2 0	0.02 0	0				
№ 8. 16 августа; t ₀ =15ч 33мин 32.3с; φ=44.73°; λ =35.0°; h=18 км; K_{Π} =8.1	1					
SUDU S(E) 18 0.48 2.5 4.8 0.54 1.36 0.18 0.48 4.54 0.18 0	0.1 3.	3.1				

Сравнивая полученные результаты (табл. 4) и опубликованные в [3], можно отметить, что для большинства изученных землетрясений новые значения

УТОЧНЕННЫЕ ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА 1990 ГОДА

сейсмических моментов M_0 и радиусов круговой дислокации r_0 получились в 1.1-1.5 раза выше прежних определений. Соответственно, определяемые по ним сброшенные напряжения $\Delta \sigma$, деформации сдвига ϵ и подвижки по разрыву u оказались в 2 и более раза меньше, чем ранее полученные.

В целом откорректированные основные динамические параметры очагов M_0 и r_0 удовлетворяют средним долговременным зависимостям от энергии землетрясений [16], находясь в пределах погрешностей определяемых величин:

lg
$$M_0 = 0.645(\pm 0.027) \cdot K_{\Pi} + 15.142(\pm 0.271), \, \rho = 0.99$$

lg $r_0 = 0.112(\pm 0.011) \cdot K_{\Pi} - 1.293(\pm 0.107), \, \rho = 0.93$

где ρ – коэффициент корреляции.

Наибольшее соответствие M_0 и r_0 приведенным уравнениям получено для главных землетрясений 29 июня $12^{\rm h}07^{\rm m}41.5^{\rm c}$ с K_Π =10.8, 2 июля в $0^{\rm h}35^{\rm m}50.9^{\rm c}$ с K_Π =10.9 и 16 августа в $04^{\rm h}32^{\rm m}18.3^{\rm c}$ с K_Π =12.8, для которых учтена реальная направленность излучения на станции регистрации. С учетом новых определений (Табл. 4) откорректирована электронная база данных по очаговым параметрам для их дальнейшего использования в научных и прикладных задачах.

Список литературы

- 1 Пустовитенко Б.Г., Кульчицкий В.Е., Пустовитенко А.Н., Пантелеева Т.А., Поречнова Е.И. Особенности сейсмичности Крымско-Черноморского региона в 1990 г. // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым-Карпаты) за 1990 г. Киев: Наукова думка, 1994. С. 156–162.
- 2. Пустовитенко А.Н., Пантелеева Т.А. Землетрясения Крыма // Землетрясения в СССР в 1990 г. Москва: ОИФЗ РАН, 1996. С. 20–23
- 3. Пантелеева Т.А. Спектры и динамические характеристики очагов землетрясений Крыма за 1990 г. // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым-Карпаты) за 1990 г. Киев: Наукова думка, 1994. С. 167–179.
- 4. International Seismological Centre, On-line Bulletin // http: // www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom, 1990.
- Пустовитенко А.А, Пустовитенко Б.Г Новые данные о процессах в очаге ощутимого землетрясения 2 июля 1990 г. (Крым) // Доповіді Національной Академіі Наук Украины, №2, 2015. С. 102–109.
- 6. Пустовитенко Б.Г. Механизм очагов ощутимых землетрясений Крымско-Черноморского региона последних 20 лет // Сейсмологический бюллетень Украины за 2000 год. Севастополь: НПЦ « ЭКОСИ-Гидрофизика», 2002. С. 59–64.
- 7. Свидлова В.А. (составитель). Каталог и подробные данные о землетрясениях Крымско-Черноморского региона за 1990 г. // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым-Карпаты) за 1990 г. Киев: Наукова думка, 1994. С. 5–69.
- 8. Балакина Л.А., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. Москва: Наука, 1972. 198 с.
- 9. Kennet B.L.N. Seismological Tables: ak 135 // Research School of earth Sciences Australian national University, Australia, Canberra, ACT0200, 2005, P. 80.
- 10. Кульчицкий В.Е., Сафонова Г.П., Свидлова В.А. Годографы сейсмических волн Крымско-Черноморских землетрясений // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым-Карпаты) за 1983 г. Киев: Наукова думка, 1986. С. 94–103.

- 11. Brune J.N. Tectonic stress and the spectra of seismic shear waves from earthquake // J.Geophys. Res. 1970. V. 75. № 26. P. 4997–5009.
- 12. Пустовитенко Б.Г., Пантелеева Т.А. Спектральные и очаговые параметры землетрясений Крыма Киев: Наукова думка, 1990. 249 с.
- 13. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому, и расчет динамических параметров очага // Вулканология и сейсмология. 1989. №2. С. 66–79.
- 14. Костров Б.В. Механика очага тектонического землетрясения. М.: Наука, 1975. 179 с.
- Hanks T.C., Kanamori H.A moment magnitude scale // J.Geophys. Res. 1979. 84. № 35. P. 2348– 2350.
- 16. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А., Поречнова Е.И. Пространственные особенности очаговых параметров землетрясений Крыма // Сейсмичность Северной Евразии. Обнинск: ГС РАН, 2008. С. 238–242.

UPDATED FOCAL PARAMETERS OF 1990 EARTHQUAKES IN CRIMEA

B. G. Pustovitenko

Seismology Department of S.I. Subbotin Geophysics Institute UNAS, Simferopol, Republic of Crimea, Russia

E-mail: bpustovitenko@mail.ru

The article presents the results of re-interpretation of the amplitude spectra of volumetric seismic waves and dynamic parameters of the sources of 1990 perceptible earthquakes in Crimea and the strongest recurrent aftershocks.

The dynamic parameters of the foci have been updated taking into account new data on the focal mechanisms of the main shocks on 2 July and 16 August, 1990.

The 2 July earthquake occurred at 0 h.35 m. 50.9 sec. under the influence of horizontal compression stresses oriented in close to meridional direction.

One of the nodal planes NP1 had close to latitudinal strike (STK=93°) and the second NP2– South-West (STK=221°) stretch with a more gentle slope.

The slip along both nodal planes – right-hand along NP1 and left-hand along NP2 – is an up thrust-shift with the domination of the up thrust component.

The strike of the nodal plane NP1 coincides with the latitudinal (Az=90±10) orientation of the first isoseist.

The 04^h32^m 18.3 sec earthquake on 16 August arose in the context of horizontal stretching. Both nodal planes were of diagonal orientation: STK=144 and STK=292.

There was a fall of the active rupture zone in the source.

The close to vertical plane NP1, whose azimuth of stretch is close to the orientation of the first isoseist can be taken as the most probable plane of rupture.

The focal mechanism parameters of both earthquakes were used to calculate the functions of the orientation of the bulk waves' radiation from the source and corrections for the orientation of radiation at the registering station.

Analog records of transverse S-waves at seismic stations "Alushta" "Kazantip", "Simferopol", "Sudak" and "Yalta" were used for the re-interpretation of focal parameters of 1990 earthquakes.

УТОЧНЕННЫЕ ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА 1990 ГОДА

For most of the studied earthquakes the new values of seismic moments M_0 and the radius of circular dislocation r_0 proved to be 1.1–1.5 times higher than the previous values.

Meanwhile the released stress, shear strain and progress on the gap u were 2 and more times less than previously obtained.

In general, the updated basic dynamic parameters of the foci M_0 and r_0 correspond to medium long-term dependencies on the energy of earthquakes, being within the experimental error for the determined values.

The greatest compliance of M_0 and r_0 to long-term dependencies was obtained for the major earthquakes: the 12^h07^m earthquake on June 29 with Mw =4.26, 2 July earthquake at 0^h35^m with Mw =4.25 and the 16 August earthquake at 04h32m with Mw =4.9, for which the actual orientation of the radiation at the registering station was taken into consideration.

The magnitude of the seismic moment Mw and the energy of dislocation formation Eu in the source for the studied earthquakes have been estimated for the first time.

Taking into account the new data the focal parameters database was updated for their further use in scientific and applied tasks.

Keywords: focal mechanism, the orientation of the radiation, seismic moment, the radius of the dislocation, released stress, the energy of a dislocation, the moment magnitude.

References

- Pustovitenko B.G., Kulchitsky V.E., Pustovitenko A.N., Panteleeva T.A., Porechnova E.I. Features of the Crimean-Black sea region seismicity in 1990 // Seismological Bulletin of the Western territorial areas of ISSN the USSR (Crimea-Carpathians) during 1990. Kiev: Naukova Dumka, 1994. P. 156–162.
- Pustovitenko A.N., Panteleeva T.A. Earthquakes in the Crimea // Earthquakes in the USSR in 1990. Moscow: OIFZ RAN, 1996. P. 20–23.
- Panteleeva T.A. Spectra and dynamic characteristics of the foci of earthquakes of the Crimea for 1990 // Seismological Bulletin of the Western territorial areas of ISSN the USSR (Crimea-Carpathians) during 1990. Kiev: Naukova Dumka, 1994. P. 167–179.
- 4. International Seismological Centre, On-line Bulletin // http: // www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom, 1990.
- Pustovitenko A.A, Pustovitenko B.G. New data about the processes in the source of the 2 July 1990 perceptible earthquake (Crimea) // Reports of the National Academy of Sciences of Ukraine, № 2, 2015 P. 102, 109
- Pustovitenko B.G. The focal mechanism of perceptible earthquakes of the Crimean-Black Sea region in the last 20 years // Seismological Bulletin of Ukraine for the year 2000. The Sevastopol, SPC "ECO-Hydrophysics", 2002. P. 59–64.
- 7. Svidlova V.A. (compiled by). Catalog and details on the earthquakes of the Crimean-Black Sea region for 1990 // Seismological Bulletin of the Western territorial areas of ISSN the USSR (Crimea-Carpathians) during 1990. Kiev: Naukova Dumka, 1994. P. 5–69.
- 8. Balakina L.A., Vvedenskaya A.V., Golubeva N.V., Misharina L.A., Shirokova E.I. Field of elastic stresses of the Earth and the earthquake focal mechanism. Moscow: Nauka, 1972. 198 p.
- Kennet B.L.N. Seismological Tables: ak 135 // Research School of Earth Sciences of the Australian National University. Australia, Canberra, ACT0200. 2005. P. 80.
- Kulchitsky V.E., Safonova G.P., Svidlova V.A. The hodographs of seismic waves of the Crimean-Black sea earthquakes // Seismological Bulletin of the Western territorial areas of ISSN the USSR (Crimea-Carpathians) for 1983. Kiev: Naukova Dumka, 1986, P. 94–103.
- 11. Brune J.N. Tectonic stress and the spectra of seismic shear waves from earthquakes // J.Geophys. Res. 1970. 75. № 26. P. 4997–5009.

- 12. Pustovitenko B.G., Panteleeva T.A. Spectral and focal parameters of earthquakes of Crimea, Kiev: Naukova Dumka, 1990. 249 p.
- 13. Aptekman Zh.Ya., Belavina Yu.F., Zakharova A.I., Zobin V.M., Kogan S.Ya., Korchagina O.A., Moskvina A.G., Polikarpova L.A., Chepkunas L.S. Spectra of P-waves in the problem of determining the dynamic parameters of earthquake sources. The transition from station to focal range and the calculation of dynamic source parameters // Volcanology and seismology, 1989. № 2. P. 66–79.
- 14. Kostrov B.V. Mechanics of the tectonic earthquake focus. M.: Nauka, 1975. 179 p.
- 15. Hanks T.C., Kanamori H.A moment magnitude scale // J.Geophys. Res. 1979. 84. № 35. P. 2348–2350.
- Pustovitenko B.G., Pustovitenko A.A., Kapitanova S.A., Porechnova E.I. Spatial features of focal parameters of earthquakes in the Crimea // The Seismicity of Northern Eurasia. Obninsk: GS RAS, 2008. P. 238–242.

Ученые записки Таврического национального университета имени В. И. Вернадского Серия «География». Том 27 (66), № 2. 2014 г. С. 179–185.

УДК 550.5

ОЦЕНКА ЛОКАЛЬНЫХ ВАРИАЦИЙ СЕЙСМИЧЕСКОЙ ИНТЕНСИВНОСТИ ПО МАКРОСЕЙСМИЧЕСКИМ ДАННЫМ ВЗРЫВНЫХ ВОЗДЕЙСТВИЙ НА ПРИМЕРЕ ГОРОДА ФЕОДОСИИ

Королев В.А., Скляр А.М.

Отдел сейсмологии Института геофизики им. С.И. Субботина НАНУ, г. Симферополь, Российская Федерация

E-mail: korolev igf@mail.ru

Предложен метод оценки локальных вариаций сейсмической интенсивности по результатам макросейсмических исследований взрывного воздействия. Приведена схема сейсмического зонирования территории города Феодосии, использованная при разработке карты сейсмического микрорайонирования.

Ключевые слова: макросейсмика, изосейсты, сейсмическая интенсивность, приращение балла, сейсмическое микрорайонирование.

ВВЕДЕНИЕ

В сейсмическом микрорайонировании (СМР) важнейшее значение имеют макросейсмические исследования, результаты которых определяют базовые критерии зонирования изучаемой территории на участки с различным приращением сейсмической интенсивности. В условиях отсутствия сильных сейсмических событий использование макросейсмики слабых и умеренных воздействий несомненно повышает качество работ по СМР. Для этого в последнее время созданы некоторые предпосылки: разработан и успешно апробирован статистический метод определения сейсмической интенсивности на базе модернизированной сейсмической шкалы типа МЅК [1, 2, 3], доказано соответствие распределений сейсмической интенсивности при сильных и ощутимых землетрясениях [7, 8]. Главная задача макросейсмических исследований для целей СМР состоит в оценке локальных вариаций сейсмической интенсивности. Макросейсмика взрывных воздействий для этой цели использована впервые.

РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

24 апреля 1979 г. в акватории Феодосийского залива Черного моря произошел мощнейший самопроизвольный взрыв боезаряда времен Великой Отечественной войны. По данным технических служб Черноморского Флота координаты взрывного источника составили: $\varphi = 45^{\circ}01.7'$; $\lambda = 35^{\circ}24.5'$. Сотрясения от взрыва ощущались практически всеми жителями Феодосии. В отдельных зданиях вблизи порта наблюдались легкие повреждения. Интенсивность толчков оценивалась от 3 до 5 баллов по стандартной шкале.

В первые дни после события нами было организовано детальное макросейсмическое обследование массового характера. Обследование проведено методом прямого опроса жителей по специально разработанным маршрутам,

достаточно равномерно охватывающим территорию города. В сборе макросейсмической информации активное участие принимали авторы настоящей статьи, Литвинов О.В., Пехтерев В.А., Пехтерева Е.Г. и др.

Отсутствие достаточного опыта макросейсмических исследований в сочетании со слабой методической базой не позволили в то время получить какие-либо значимые результаты. Выполнено лишь построение детализированной схемы изосейст (Рис. 1), на основании которой была сделана попытка на качественном уровне сопоставить характерные особенности макросейсмического поля (конфигурацию изосейст, зоны аномальной интенсивности и пр.) с грунтовыми условиями.

Стимулом к новому обращению к материалам обследования воздействий от морского взрыва послужило начало комплексных исследований по созданию качественно новой детальной карты сейсмического микрорайонирования города Феодосии. За более чем тридцатилетний период времени на рассматриваемой территории не произошло ни одного ощутимого землетрясения. Между тем многолетний опыт работ по сейсмическому микрорайонированию показал, что наиболее достоверное зонирование территории на участки с разным приращением сейсмической интенсивности получается при использовании результатов макросейсмических исследований. К тому же ряд собственных методических разработок позволяет выполнить процедуру оценки локальных вариаций сейсмической интенсивности достаточно корректно.

В качестве базового макросейсмического объекта, играющего роль индикатора сейсмического воздействия, взят «человек, находящийся на первом этаже здания в спокойном состоянии». Степень реакции объекта на сейсмическое воздействие оценивалась в соответствии с градациями шкалы *MMSK-84* [1].

Из общего массива данных отобрано 626 опросов по реакции людей, находившихся во время взрыва преимущественно в одноэтажных зданиях или на первых этажах многоэтажных зданий. Поскольку человек в данном случае реагирует на колебание здания, то физическим объектом является здание. Общее количество обследованных зданий — 530. Таким образом, было получено достаточно представительное множество однородных данных в виде степеней реакции, нанесенных на карту обследованной части города, т. е. некоторое макросейсмическое поле.

Анализ таких полей традиционными для нас методами тренд-анализа [2, 3] (скользящее осреднение, разностные оценки осредненных значений фиксированных ячейках) в данном случае неприемлем из-за несоизмеримых эпицентральных расстояний и линейных размеров изучаемого участка города (15% критерий). К тому же макросейсмическое поле поверхностных взрывов сильно искажено вследствие анизотропии среды и из-за пестроты инженерногеологического строения территории. Выход из этого положения состоит, по нашему мнению, в использовании ранее апробированного нами подхода, основанного на оценке приращения балла относительно так называемой фоновой интенсивности, оцененной в пределах одинаковых ячеек, на которые разбивается изучаемая территория [4]. При анализе макросейсмических полей Вранчских землетрясений этот прием оказался достаточно эффективным [5].

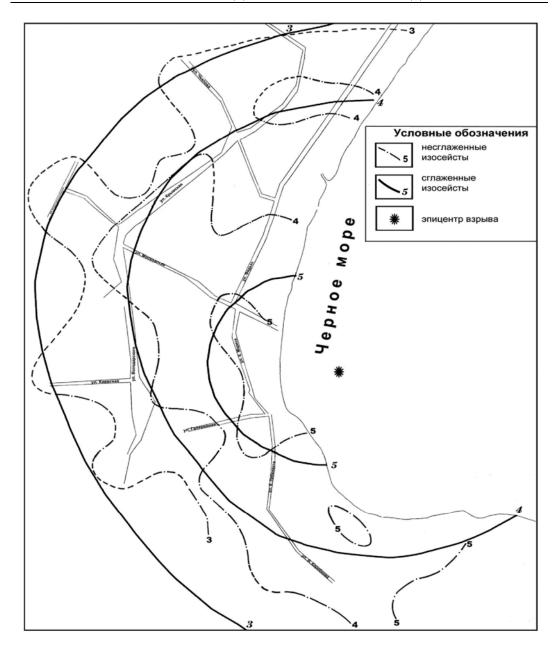


Рис. 1. Схема распределения интенсивности сотрясений при взрыве 24 апреля 1979 г. на территории г. Феодосии.

Размер ячейки в форме квадрата был выбран, во-первых, исходя из статистически достаточного количества макросейсмических объектов, попадающих в ее пределы (не менее 5) и, во-вторых, во избежание пропуска цели, исходя из

минимальных размеров выделенных участков с типичными инженерногеологическими условиями. Оптимальный размер ячейки в плане составил 500×500 м. Фоновая интенсивность (*I*) рассчитывалась для центра ячейки по уравнению макросейсмического поля Н.В. Шебалина [6] по формуле:

$$I = 1.5M - v \lg r + 3$$
,

где M — магнитуда взрыва, ν — эффективное затухание интенсивности, r — расстояние от эпицентра взрыва до центра ячейки.

Определение магнитуды взрыва представляло отдельную задачу. В архиве были найдены и проанализированы записи взрыва, полученные на сейсмостанциях «Феодосия», «Алушта», «Ялта» и «Симферополь». Определение магнитуды было выполнено Свидловой В.А. различными способами. Усредненное значение составило M=2.8.

Эффективное затухание оценивалось в различных направлениях от эпицентра к каждому из центров площадок по формуле Блейка [6]:

$$I_i - I_K = v \lg (r_K/r_i),$$

где r_i и r_{κ} – эпицентральные расстояния до изосейст с соответствующим баллом I_{κ} и I_i в данном направлении.

Детализированные изосейсты генерализованы и представлены в виде выпуклых кривых с максимально возможным приближением к правильной форме (Рис. 1). Затухания рассчитывались как средние значений затуханий для каждой пар изосейст 5–4, 4–3, 3–5 *баллов*. Полученные значения *у* изменялись от 3.5 до 5.5

Фактическая интенсивность в ячейке определялась по среднему значению степени реакции объектов, расположенных в ее пределах, используя переходные соотношения шкалы *MMSK-84* [1]. Вариации рассчитывались как разности между фоновой и фактической интенсивностями, а затем округлялись до целого *балла*.

Локальные вариации сейсмической интенсивности, выраженные в *баллах* используемой шкалы, представлены на рисунке 2. Большая часть территории города отнесена к зоне с нулевым приращением *балла* (I_0). Зоны повышения интенсивности на один *балл* тяготеют к участкам распространения обводненных песчаноглинистых отложений.

Необходимо отметить, что в макросейсмике соблюдается принцип автомодельности [7, 8], что позволяет уверенно экстраполировать полученные результаты в область сильных движений.

Таким образом, выполненные исследования позволили обоснованно определить схему сейсмического зонирования территории Феодосии: $I_0 + 1$ балл. Этот результат использовался как базовый при разработке новой карты сейсмического микрорайонирования г. Феодосии.

Локальные вариации интенсивности сотрясений на территории г. Феодосии

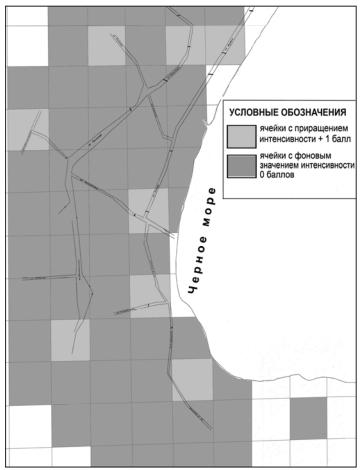


Рис. 2. Карта-схема распределения локальных вариаций интенсивности сотрясений на территории г. Феодосии.

выводы

- 1. Впервые предложен метод оценки локальных вариаций сейсмической интенсивности по результатам анализа макросейсмических данных взрывного воздействия.
- 2. Определена схема зонирования территории Феодосии, как двухзвенная, с преобладающими участками нулевого приращения балла и немногочисленными участками приращения сейсмической интенсивности в один балл.
- 3. Схема зонирования заложила основу сейсмического микрорайонирования города.

Список литературы

- 1. Ершов И.А. Проблема конструкции шкалы интенсивности землетрясений с позиций сейсмологов. Прогноз сейсмических воздействий / И.А. Ершов, Н.В. Шебалин // Вопросы инженерной сейсмологии. Вып. 25. М.: Наука, 1984. С. 78–96.
- 2. Королев В.А. Анализ макросейсмического эффекта землетрясения 13 ноября 1981 года в г. Измаиле. Макросейсмические и инструментальные исследования сильных землетрясений / В.А. Королев, А.М. Скляр, В.С. Князева // Вопросы инженерной сейсмологии. Вып. 26. М.: Наука, 1985. С. 51–57.
- 3. Королев В.А. Макросейсмика Крымских землетрясений 1927 года и сейсмическое микрорайонирование / В.А. Королев, А.М. Скляр, В.С. Князева // Геофизический журнал, Т. 30, №5. 2008. С. 115–123.
- Королев В.А. Параметры уравнения поля сейсмических интенсивностей сильных подкоровых землетрясений зоны Вранча для территории Украины / В.А. Королев, М.А. Лазаренко // Геофизический журнал. – 2003. – Т. 25. № 6. – С. 106–112.
- Лазаренко М.А. Оценка сейсмической опасности на территории Украины от землетрясений Вранча / М.А. Лазаренко, В.А. Королев // Геофизический журнал. – 2004. – Т. 26, № 3. – С. 102– 110
- Шебалин Н.В. Методы использования инженерно-сейсмологических данных при сейсмическом районировании // Сейсмическое районирование территории СССР. – М.: Наука, 1968. – С. 95–111.
- Скляр А.М. Макросейсмика слабых и сильных землетрясений в задачах сейсмического микрорайонирования / А.М. Скляр, В.А. Королев, В.С. Князева // Тезисы докладов IV международной конференции «Геофизический мониторинг опасных геофизических процессов и экологического состояния среды». Киев, 2003. С. 49–51.
- 8. Королев В.А. О возможности прогноза локальных вариаций сейсмической интенсивности при сильных землетрясениях по макросейсмике ощутимых / В.А. Королев, А.М. Скляр, В.С. Князева // Сейсмологический бюллетень Украины за 2003 год. Севастополь: НПЦ «Экоси-Гидрофизика», 2005. С. 119–123.

ESTIMATION OF LOCAL VARIATIONS OF SEISMIC INTENSITY BY MACROSEISMIC DATA OF EXPLOSIVE IMPACTS ON THE EXAMPLE OF THE TOWN OF FEODOSIYA

Korolyov V.A, Sklyar A.M.

Seismology Department of S.I. Subbotin Geophysics Institute UNAS, Simferopol, Republic of Crimea, Russia

E-mail: seismosilver@mail.ru

The work is devoted to the final stage of determining seismic hazard: seismic micro zoning. The most important aspect of this problem, consisting in the evaluation of local variations of seismic intensity in the study area and in determining the zoning scheme has been considered. For these purposes macro seismic explosive effect was used for the first time.

A spontaneous explosion of the warhead of the great Patriotic war (magnitude 2.8) occurred on 24 April 1979 in the area of Feodosia Bay of the Black sea. The shocks from the explosion were felt by almost all inhabitants of Feodosiya. Minor damage to buildings was observed in separate buildings near the port.

ОЦЕНКА ЛОКАЛЬНЫХ ВАРИАЦИЙ СЕЙСМИЧЕСКОЙ ИНТЕНСИВНОСТИ ПО МАКРОСЕЙСМИЧЕСКИМ ДАННЫМ ВЗРЫВНЫХ ВОЗДЕЙСТВИЙ...

A preliminary assessment of the intensity of the shocks was 3 to 5 points by the standard scale. As a result of mass survey of the effects of the explosive impact on the territory of the city the response of 626 similar objects-indicators was received. The analysis of macro seismic data allowed us to estimate local variations of area on the territory of the city as an increment of the actual intensity of the shocks as compared to its so-called background value rounded to the nearest whole point. (The City map of concussions to its so-called background value is presented in the form of a raster with equal cells of the square form. The background intensity was calculated for the center cell by using the well-known equation of the macro seismic field by N.V. Shabalin with a variable coefficient of effective attenuation dependent on the azimuth directions from the epicenter of the explosion to the center of the cell.

The actual intensity in the cell was determined by the average degree of the macro seismic response of the objects located within it, using the transitional ratio of the used scale. Thus, the prevailing part of the territory of the city belongs to the area with zero increment points (I0). Few cells with increase in the intensity by one point are concentrated in the areas of distribution of sandy-clay deposits. The performed studies allowed to determine the reasonable scheme of seismic zoning of the territory of Feodosia as two-unit one: IO + I point.

The model provided a reliable basis for the seismic micro zoning of Feodosiya and can be used for other areas of the South-Eastern coast of Crimea in similar soil conditions.

Keywords: micro seismicity, isoseists, seismic intensity, the increment of points, seismic micro zoning.

References

- Ershov I.A. Problema konstrukcii shkaly intensivnosti zemletryasenij s pozicij sejsmologov. Prognoz sejsmicheskih vozdejstvij / I.A. Ershov, N.V. SHebalin // Voprosy inzhenernoj sejsmologii. Vyp. 25. – M.: Nauka, 1984. – S. 78–96.
- Korolev V.A. Analiz makrosejsmicheskogo ehffekta zemletryaseniya 13 noyabrya 1981 goda v g. Izmaile. Makrosejsmicheskie i instrumental'nye issledovaniya sil'nyh zemletryasenij / V.A. Korolev, A.M. Sklyar, V.S. Knyazeva // Voprosy inzhenernoj sejsmologii. Vyp. 26. – M.: Nauka, 1985. – S. 51–57.
- 3. Korolev V.A. Makrosejsmika Krymskih zemletryasenij 1927 goda i sejsmicheskoe mikrorajonirovanie / V.A. Korolev, A.M. Sklyar, V.S. Knyazeva // Geofizicheskij zhurnal, T. 30, №5. 2008. S. 115–123.
- 4. Korolev V.A. Parametry uravneniya polya sejsmicheskih intensivnostej sil'nyh podkorovyh zemletryasenij zony Vrancha dlya territorii Ukrainy / V.A. Korolev, M.A. Lazarenko // Geofizicheskij zhurnal. − 2003. − T. 25. № 6. − S. 106−112.
- Lazarenko M.A. Ocenka sejsmicheskoj opasnosti na territorii Ukrainy ot zemletryasenij Vrancha / M.A. Lazarenko, V.A. Korolev // Geofizicheskij zhurnal. 2004. T. 26, № 3. S. 102–110.
- 6. SHebalin N.V. Metody ispol'zovaniya inzhenerno-sejsmologicheskih dannyh pri sejsmicheskom rajonirovanii // Sejsmicheskoe rajonirovanie territorii SSSR. M.: Nauka, 1968. S. 95–111.
- Sklyar A.M. Makrosejsmika slabyh i sil'nyh zemletryasenij v zadachah sejsmicheskogo mikrorajonirovaniya / A.M. Sklyar, V.A. Korolev, V.S. Knyazeva // Tezisy dokladov IV mezhdunarodnoj konferencii «Geofizicheskij monitoring opasnyh geofizicheskih processov i ehkologicheskogo sostoyaniya sredy». – Kiev, 2003. – S. 49–51.
- Korolev V.A. O vozmozhnosti prognoza lokal'nyh variacij sejsmicheskoj intensivnosti pri sil'nyh zemletryaseniyah po makrosejsmike oshchutimyh / V.A. Korolev, A.M. Sklyar, V.S. Knyazeva // Sejsmologicheskij byulleten' Ukrainy za 2003 god. – Sevastopol': NPC «EHkosi-Gidrofizika», 2005. – S. 119–123.

СОДЕРЖАНИЕ

Предисловие
Условные обозначения
Принятые сокращения названий сейсмических станций
Свидлова В. А., Калинюк И. В., Бондарь М. Н., Козиненко Н. М., Сыкчина 3. Н. Сейсмичность Крыма в 2014 году
Пустовитенко Б. Г., Эреджепов Э. Э.
Спектральные и динамические параметры очагов землетрясений Крыма 2014 года
Вербицкий С. Т., Пронишин Р. С., Прокопишин В. И., Стецкив А. Т., Чуба М. В., Нищименко И. М., Келеман И. Н.
Сейсмичность Карпат в 2014 году87
Степаненко Н. Я., Карданец В. Ю., Симонова Н. А. Особенности сейсмического процесса в карпатском регионе в 2014 году
Пустовитенко Б. Г.
Уточненные очаговые параметры землетрясений Крыма 1990 года
Королев В. А., Скляр А. М.
Оценка локальных вариаций сейсмической интенсивности по макросейсмическим данным взрывных воздействий на примере города Феодосия
Содержание